GNUstep Database Library Introduction

(©2006 Free Software Foundation

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions.

Table of Contents

1 Introduction...................,
2 Conceptscoiiiii

3 Key Value Coding

3.1 Setting values through KVC........
3.2 Accessing values through KVC,
3.3 Key Paths ...
3.4 Type promotion. ...
3.5 Class specific implementation............... ... i,

4 ClasSesS.

4.1 Model Classest
4.2 Database specific classes.o
4.3 Data oriented classes. ...
4.4 EOModel Class
441 OVETVIEW .ottt ettt ettt e e e e e et
4.5 EOEnNtity class.
4.5 1 OVETVIEW .ottt ettt e e e e e e e e
4.5.2 Class Propertiesot
4.5.3 ClasS NAMEottt ettt
4.5.4 Primary Key Attributes........o i
4.5.5 External name
4.6 EOAttribute class........... .o
4.6.1 OVEIVIEW .ottt ettt e
4.6.2 NaME . oot
4.6.3 Column Nameouuiiiiiiiiiiiii e
4.6.4 Adaptor value type.o
4.6.5 External type...... ...
4.6.6 Value typeot
4.6.7 Valueclassname..............ooiiiiiiiiiiiiieeiai,
4.6.8 Value factory method name...............
4.6.9 Value factory argument type..........c.oooiiiiiiiiiii..
4.7 EORelationship class....... ..o,
471 OVETVIEW . ottt et ettt e e e et
4.8 EOModelGroup class. ...
4.8. 1 OVEIVIEW . ittt e e e e e
4.9 EOAdaptor class............ooiii
4.9 1 OVETVIEW .ottt et e e e e e e e e e e e
4.10 EOAdaptorContext class..........oooiiiiiiiiiiiiiiiii ..
4.11 EOAdaptorChannel class. ...,
4.12 EODataSource class....... ..ot

4121 OVEIVIEW .ttt i ettt e e e e e 9

4.12.2 Fetch objects....... oo 10
4.12.3 Creating objectst 10
4.12.4 Inserting objects ... 10
4.12.5 Deleting objects.o 10
4.12.6 Qualified DataSources........... ..., 10
4.12.7 EODatabaseDataSource class................coovvvi.. 10

4.13 EOEditingContext class. ... 10
4131 OVEIVIEW .ottt e e e 10

4.14 EOGenericRecord class ... 11
4141 OVEIVICW . vttt et et e e e e e e 11

5 Model Creation.............. 12
5.0.1 Example model file......... 12

5.0.2 Creating with DBModeler................, 14

6 Creating a project............................. 16
6.0.1 Creating a makefile.......... i 16

6.0.2 Adding Resource Files.........o L. 16

6.0.3 A complete GNUmakefile................................. 16

7 Database creation 17
7.0.1 Creating the database with DBModeler................... 17

8 Database connection 18
9 Working withdata............................ 19
9.1 Adding some data. ... 19
9.2 Working with relationships................ . . . L. 20
10 EOInterface......... 23
10.1 Imtroductionooiiii 23
10.2 EODisplayGroup class ... 23
10.3 EOAssociation class. 24

ii

Chapter 1: Introduction 1

1 Introduction

This document is intended to get people started developing with GDL2. A knowledge of
objective-c and relational database concepts is assumed.

While not intended as a thorough reference or a replacement for the API docs and surely
omits details for the sake of simplicity it attempts to provide a starting point for people
unfamiliar with GDL2 or EOF to get started developing their first application.

If you are reading this document from the GDL2 Sources, most example sources are
provided in the ../../Examples/ directory.

Chapter 2: Concepts

2 Concepts

Chapter 3: Key Value Coding 3

3 Key Value Coding

Key Value Coding is a concept used widely throughout GDL2, it provides a mechanism by
where you can access and modify an objects set/accessor methods or even instance variables
directly, through a named key.

Additionally some classes may implement KVC in a way specific to the class.

3.1 Setting values through KVC

Setting values through key value coding will try to call a method ’-setKeyName:” with the
value as the parameter to -setKeyName: as a parameter failing that, if anObject had an
instance variable with the same name as the key that would be modified directly.

If anObject does not respond to ‘-setKeyName:* and there is no instance variable with
the same name as the key, an exception is thrown.

[anObject setValue:@"bar" forKey:@"foo"];

Will first try to call -setFoo: then attempt to set the instance variable named "foo" to
llbarll.

3.2 Accessing values through KVC

Accessing values through Key Value Coding first attempts to call the -keyName method on
anObject if it responds. If the object does not respond then it will try to access an instance
variable with the name of the key.

If there is no method or instance variable with the name of the key an exception will be
thrown.

For example,
[anObject valueForKey:@"foo"];

Will first try to call -foo, then attempt to return instance variable named foo.

3.3 Key Paths

Key paths are a list of keys separated by a dot.

The first key accesses the key on the target object through normal KVC, and each
subsequent key is sent to the object returned through the previous key in the list.

For example,
[anObject valueForKeyPath:@"foo.bar"];
Will be equivalent to
[[anObject valueForKey:@"foo"] valueForKey:@"bar"];

3.4 Type promotion
When a accessing a key, you may access keys for things such as standard ¢ numerical types,
and they will be automatically promoted to their object equivalent
For example:
[@"foo" valueForKey:@"length"];
Returns a NSNumber object containing ’3’.

Chapter 3: Key Value Coding 4

3.5 Class specific implementation

By implementing valueForKey: and setValueForKey: classes can implement functionality
to contain keys in an instance variable such as a dictionary, but they can also implement
something to work on a collection of objects.

For instance NSArray implements KVC to forward key value coding to all objects in the
array.
Suppose we have an array contain a few string objects.
("Example", "array", "containing", "strings")
If we get the value for the key length, it will return an NSArray of NSNumbers
(7, 5, 10, 7).

Chapter 4: Classes 5

4 Classes

4.1 Model classes

The model related classes are important in that they define a databases structure. Giving
GDL2 a way to map a relational database into a set of objects.

4.2 Database specific classes

The database specific classes loadable through bundles provide a method for GDL2 to

connect to and abstract implementation details between different database implementations.
Currently adaptors for SQLite3 and PostgreSQL exist.

4.3 Data oriented classes

The data oriented classes relate to actual data manipulation and management.
4.4 EOModel class

4.4.1 overview
A model represents GDL2s interface to a database. It contains information required to
connect to the database along with entities and stored procedures.

All the model classes can be written to and read from property list files in the form of
.eomodel or .eomodeld files. While .eomodel files contain a model and all its entities and
objects in a single property list, .eomodeld files are a directory with each of the property
lists in their own file.

Typically you won’t create an model through manual instantiation of the classes but
store them in and read them from a property list. We have provided an example .eomodel
file See Chapter 5 [Example model file], page 12.

An EOModel Typically has:
1. A Name
2. An adaptor name
3. A connection dictionary
4. An array of entities

4.5 EOEntity class

4.5.1 overview

An entity contains information pertaining to a table in a database in the form of attributes
and relationships.

Additionally an entity contains:

An array of class properties

An array of primary key attributes

A class name

W=

An External name

Chapter 4: Classes 6

4.5.2 Class properties

A class property of an entity can be either an attribute or a relationship. typically class
properties are the set of attributes or relationships which are user visible and need to be
set or accessed by the user. Primary and Foreign keys attributes are usually derived from
other attributes or generated automatically and so they are not typically class properties.

A class property will be available through Key Value Coding for access and modification,
in an instance of an Enterprise object.

4.5.3 Class name

an EOEntity’s class name represents the name of the class which will be instantiated when
creating an Enterprise Object such as EOGenericRecord or a custom object.

4.5.4 Primary Key Attributes

Primary key attributes specify which attributes uniquely identify a row in the table, they
are typically generated automatically by GDL2. They correspond directly to the relational
database concept.

4.5.5 External name

The external name represents the table name in the database server, and in any SQL the
adaptor might generate.

4.6 EOAttribute class

4.6.1 overview

An attribute typically maps a table column to an instance variable, in which case the
attribute is a class property. Some attributes represent foreign keys which are used to
create realationships yet do not correspond to a property in the enterprise object. Other
attributes may represent primary keys which needn’t be class property either. In fact some
parts of framework work more smoothly if primary key attributes and foreign key attributes
are not class properties.

Attributes typically contain:
1. A name

A column name

An adaptor value type

An external type

A value type

A value class name

A value factory method name

® NS O W

a factory method argument type

Some additional properties an attribute may have:
1. Read only
2. Allows null

Chapter 4: Classes 7

3. Width

4. Precision
5. Scale
4.6.2 Name

The attributes name when the attribute is a class property is used as the key when doing
key value coding on an enterprise object.

It also uniquely identifies the attribute in its entity there many not be an attribute with
the same name as another attribute or relationship in an entity.

4.6.3 Column name

The adaptor uses the column name in generating SQL.

4.6.4 Adaptor value type
Indicates the type of the attribute as contained in the database
Valid adaptor value types are:

1. EOAdaptorNumberType

2. EOAdaptorCharactersType

3. EOAdaptorBytesType

4. EOAdaptorDateType

Corresponding to numerical, string, raw data, and date value types.

4.6.5 External type

An external type is a string representing an adaptor specific database type different adaptors
may use different names where the PostgreSQL adaptor might use ’char’. The SQLite3
Adaptor might use "TEXT’

it gives you full control on how the data is stored in the specific adaptor where the
adaptor value type allows you to specify a few generic values.

4.6.6 Value type

Value types are a string with a single character such as 'f’ for floats 'c¢’ for chars a full list
of the standard types is available in the GDL2 API reference for EOAttributes -valueType
method.

The value type allows you to further refine the adaptor value type where EOAdaptor-
NumberType might represent a integer, float, or double type.

4.6.7 Value class name

The value class name specifies the class which will be present in an Enterprise Object
containing the attribute.

A property of this class will be instantiated when a field is retrieved from the database,
similarly a instance of this will be converted into the external type when being sent to the
datbase server.

Chapter 4: Classes 8

4.6.8 Value factory method name

When the Value Class Name is a custom object for instance NSImage created from a blob
of data. The value factory method name denotes the initializer for the class, used to create
a new instance of the custom class.

The value class name is an NSString representing a selector accepting a single argument
suitable for passing to the NSSelectorFromString function.

4.6.9 Value factory argument type

This is the type of the argument sent to the value factory method name.
Valid types are

1. EOFactoryMethod ArgumentIsNSData

2. EOFactoryMethod ArgumentIsNSString

3. EOFactoryMethod ArgumentIsBytes

4.7 EORelationship class

4.7.1 overview

A relationship represents a connecton between entities and are described with EOJoin’s. A
join defines source and destination attributes — The attributes of the joining entity which
must match.

A relationship may be of type to-one or to-many. In a to-many the destination will be
an array of objects, and a to-one relationships destination a single object.

Typically a relationship is a class property. Yet some relationships may soley be used
for flattening other relationships which are class properties, yet need not be class properties
themselves.

4.8 EOModelGroup class

4.8.1 overview

When models have relationships to other models, they ask their model group.

There is a special model group - the default model group - which contains all the models
in the applications resources and the resources of any frameworks the application uses. If
your model file is not available through application or framework resources you will need
to add it to a model group.

4.9 EOAdaptor class

4.9.1 overview

An adaptor abstracts the difference between different database implementations. It can
connect to the database with the help of a connection dictionary and create and execute
SQL statements.

While an adaptor is made up of many different classes. The EOAdaptor class is sort of
an entry point into the different available classes.

Chapter 4: Classes 9

And a typical use for the EOAdaptor class is creating an instance of a specific adaptor,
either by name or through the adaptor name in a model.

Typical methods for the EOAdaptor class are:
1. -createAdaptorContext
2. -runLoginPanel
3. -assertConnectionDictionarylsValid
4. +adaptorWithModel:

4.10 EOAdaptorContext class

An EOAdaptorContext can create an adaptor channel and will transparently handle trans-
actions for the channel, It can begin, commit, roll back transactions.

Additionaly you can enable debugging on the context and its channels.
Typical methods for an EOAdaptorContext:

1. -createAdaptorChannel

2. -setDebugEnabled:

4.11 EOAdaptorChannel class

An adaptor channel can open and close a connection to the adaptors database server. Along
with fetch rows from the database and create, update, and delete rows in the database.

It is the main communication channel for gdl2, in creating the connection to the database,
and executing any SQL statements which have been prepared through EOSQLExpression.
Though it also has methods for building SQL expressions from entities, and possibly turning
the results back into enterprise objects.

Because EOAdaptorChannel can create most SQL statements for you, you’ll rarely need
to do that yourself, though it is available if needed.

Typical methods for an EOAdaptorChannel:
1. -openChannel
2. -closeChannel

3. -isOpen
4.12 EODataSource class

4.12.1 overview
EODataSource is an abstract base class, and implements no real functionality on its own,
instead you’ll access EODataSource subclass.

A data source represents a collection of rows inside of a table. It can create rows, delete
and provide access to the individual rows represented as Enterprise objects.

Typical methods for an EODataSource subclass:
1. -fetchObjects
2. -createObject:
3. -deleteObject:

Chapter 4: Classes 10

4. -insertObject:
5. -dataSourceQualified ByKey:

4.12.2 Fetch objects

The -fetchObjects method will return an array of enterprise objects. Typically these will
be retrieved directly from data in the database server. Then the caller will save the array
for access or modification.

4.12.3 Creating objects

The -createObject: method will create a new enterprise object for insertion into the data-
base. A subclass will generally insert this new object into an editing context. Though the
caller is responsible for inserting the object into the data source with -insertObject:.

4.12.4 Inserting objects

The -insertObject: method will schedule the object for addition into the database server
EditingContexts changes are saved to the database.

4.12.5 Deleting objects

The -deleteObject: method will schedule the object for removal from the database server
when the EOEditingContexts changes are saved to the database.

4.12.6 Qualified DataSources

Subclasses may implement this method to return a detail data source.

A detail data source is a datasource which is created from following a relationship in an
object of the receiever: the master object.

in our example you might have a data source for the authors entity and qualify a detail
data source, with the toBooks key.

4.12.7 EODatabaseDataSource class

EODatabaseDataSource class is a subclass of EODataSource.

To initialize an EODatabaseDataSource you'll give it a reference to an EOEditingContext
and an entity name.

EODatabaseDataSource initializers:
1. -initWithEditingContext:entityName:
2. -initWithEditingContext:entityName:fetchSpecificationName:

Once initialized, you can call the EODataSource methods on it, to create fetch insert,
and delete objects from the datasource.

4.13 EOEditingContext class

4.13.1 overview

An editing context is responsible for managing changes to enterprise objects and provides
the ability to save and undo those changes. Including inserts, updates, and deletes.

Typical methods of the EOEditingContext class:

Chapter 4: Classes 11

1. -saveChanges:
2. -revert:
3. -undo:
4. -redo:
5. -insertObject:
6. -deleteObject:
You may have noticed that there is no mention of a method for modifying an object
through an EOEditingContext. As you will modify the objects directly, and EOEditing-

Context will merely take note of the changes, and save snapshots of the objects as they are
being modified so you can undo those changes.

4.14 EOGenericRecord class

4.14.1 overview

EOGeneric record represents an actual row in a table being the default enterprise object it
contains no custom business logic and is accessible solely through key value coding.

Where an entity represents the description of the table. It’s columns and types. enter-
prise objects represent the data contained in the table.

EOGenericRecords are generally created with a reference to an entity. They export as
keys the class properties of the entity, for access and modification.

If you have an EOGenericRecord from the ’authors’ entity of our example model you
could set the authors name as so. See Chapter 5 [Example model file], page 12.

[anAuthor takeValue:Q@"Anonymous" forKey:@'"name"];
And retrieve the author name with:

[anAuthor valueForKey:@"name"];

Chapter 5: Model Creation 12

5 Model Creation

Models can be created in 3 ways
1. Manual written with property lists.
2. Hard coding the model in objective-c.
3. Creation of plists with the DBModeler application.

while DBModeler provides the easiest way, followed by manually writing the property
lists, and hard coding the model is both tedious and complicated.

5.0.1 Example model file

Below is a example property list model created with DBModeler, it contains a Model for a
library 2 entities, author and book

author contains 2 attributes, authorID the primary key number, and name a string book
contains 3 attributes, bookID the primary key number, authorID a foreign key number, and
title a string.

author and book each contain a relationship author a to-many relationship to each of
the authors books, and book a to-one relationship to the books author for the sake of
demonstration i’'m ignoring books with multiple authors.

it also contains an adaptor name, and an adaptor specific connection dictionary.

EOModelVersion = 2;

adaptorName = SQLite3;

connectionDictionary = {
databasePath = "/tmp/example.db";

}
entities = (
{
attributes = (
{
columnName = authorID;
externalType = integer;
name = authorID;
valueClassName = NSNumber;
},
{
columnName = name;
externalType = varchar;
name = name;
valueClassName = NSString;
}

);
className = EOGenericRecord;
classProperties = (

name,

toBooks

Chapter 5: Model Creation

);

externalName = authors;
name = authors;
primaryKeyAttributes = (

authorID
);
relationships = (
{
destination = books;
isToMany = Y;
joinSemantic = EOInnerJoin;
joins = (
{
destinationAttribute = authorID;
sourceAttribute = authorlD;
}
);
name = toBooks;
}
);
1,
{
attributes = (
{
columnName = authorID;
externalType = integer;
name = authorID;
valueClassName = NSNumber;
},
{
columnName = bookID;
externalType = integer;
name = bookID;
valueClassName = NSNumber;
},
{
columnName = title;
externalType = varchar;
name = title;
valueClassName = NSString;
}

);
className = EOGenericRecord;
classProperties = (
title,
toAuthor
);

Chapter 5: Model Creation 14

externalName = books;
name = books;
primaryKeyAttributes = (

bookID
);
relationships = (
{
destination = authors;
isToMany = N;
joinSemantic = EOInnerJoin;
joins = (
{
destinationAttribute = authorID;
sourceAttribute = authorlD;
}
);
name = toAuthor;
}
);

);
name = library;

¥

5.0.2 Creating with DBModeler
To recreate the example model with DBModeler,

select Document, New from the main menu then property Add entity twice. set the
name and external names to 'authors’ and ’books’

select Document, Set Adaptor Info, and select SQLite, and click Ok, this will bring up
the SQLite login panel, where you need to provide it a path for where to create the model
file.

Each Adaptor will have different requirements, so each login panel is quite different.
Other adaptors may have a server address, username, and database names.

select the authors entity in the outline view, after expanding the model add an attribute
to authors by selecting Property, Add attribute set the name and column name to ’au-
thorID’; and select the switch button with a key icon, to set it as the primary key for the
entity. Set the value class name to NSNumber and the external type to INTEGER

Add another entity, set the name and column names to 'name’. Select the switch button
which looks like a jewel icon to set it as a Class Property. Set the Value Class Name to
NSString and external type to TEXT.

now do the same with books, name them bookID, authorID, and title. make sure bookID
is set as the primary key not authorID in the books entity. And that title is set as a class
property.

title is a NSString/ TEXT, where authorID and bookID are NSNumber/INTEGER

Chapter 5: Model Creation 15

now add a relationship to authors name it toBooks, and Tools, inspector in the destina-
tion table, select To many, and books as the destination entity.

select authorID as the source and destination attributes

add a relationship to books, name it toAuthor. Select author as the destination entity,
and authorID as the source and destination attributes.

The select Document, Save, from the main menu.

Chapter 6: Creating a project. 16

6 Creating a project.

6.0.1 Creating a makefile

Creating a GNUmakefile for a GDL2 Project is done throught he well documented gnustep-
make makefile system.

they are standard GNUmakefiles but you’ll need to include a special file — gdl2.make
after common.make

E.g.
include $(GNUSTEP_MAKEFILES)/common.make
include $(GNUSTEP_MAKEFILES)/Auxiliary/gdl2.make

6.0.2 Adding Resource Files

Make sure you add your .eomodel or .eomodeld file to your projects resources

APP_NAME=foo
foo_RESOURCE_FILES=foo.eomodeld

6.0.3 A complete GNUmakefile

include $(GNUSTEP_MAKEFILES)/common.make
include $(GNUSTEP_MAKEFILES)/Auxiliary/gdl2.make

TOOL_NAME=eoexample
eoexample_0BJC_FILES=eoexample.m
eoexample_RESOURCE_FILES=library.eomodel
include $(GNUSTEP_MAKEFILES)/tool.make

Chapter 7: Database creation 17

7 Database creation

Now that we have created a model file, we need to generate the SQL to create the database.

7.0.1 Creating the database with DBModeler

Select, Generate SQL from the Tools menu, then select the appropriate check boxes,
Create databases, Create tables, foreign key constraints, primary key constraints, and
primary key support.
then either save the SQL to a file, or execute it, you may need to login to the database
server, but the adaptor for the model should bring up a login panel.

Chapter 8: Database connection 18

8 Database connection

An example which connects to and then disconnects from the database. provided you have
already created the database in previous section

#include <Foundation/Foundation.h>
#include <EOAccess/EOAccess.h>
#include <EQ0Control/E0Control.h>

int
main(int arcg, char *argv[], char **envp)

{

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
EOModelGroup *modelGroup = [EOModelGroup defaultGroup];
EOModel #model = [modelGroup modelNamed:@"library"];
EOAdaptor *adaptor;

EOAdaptorContext *context;

EOAdaptorChannel *channel;

/* Tools don’t have resources so we have to add the model manually. */
if (!model)
{
NSString *path = @"./library.eomodel";
model = [[EOModel alloc] initWithContentsOfFile: path];
[modelGroup addModel:model];
[model release];

}

adaptor = [EOAdaptor adaptorWithName: [model adaptorName]];
context = [adaptor createAdaptorContext];
channel = [context createAdaptorChannel];

[channel openChannel];
/* insert code here */
[channel closeChannel];

[pool release];
return O;

Chapter 9: Working with data 19

9 Working with data

9.1 Adding some data.

Here we have more complete example which writes a record to the database, then fetches
the record and updates it and saves the data again, then removes the record.

#include <Foundation/Foundation.h>
#include <EOAccess/EOAccess.h>
#include <EOControl/E0Control.h>

int
main(int arcg, char *argv[], char **envp)
{
NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
EOModelGroup *group = [EOModelGroup defaultGroup];
EOModel *model;
EOAdaptor *adaptor;
EOAdaptorContext *context;
EOAdaptorChannel *channel;
EOEditingContext *ec;
EODatabaseDataSource *authorsDS;
NSArray *authors;
id author;

model = [group modelNamed:@"library"];

/* Tools don’t have resources so we have to add the model manually */
if (!model)
{
NSString *path = @"./library.eomodel";
model = [[EOModel alloc] initWithContentsOfFile: path];
[group addModel:model];
[model release];

}
adaptor = [EOAdaptor adaptorWithModel:model];
context = [adaptor createAdaptorContext];

channel = [context createAdaptorChannel];
ec = [[EOEditingContext alloc] init];
authorsDS
= [[EODatabaseDataSource alloc] initWithEditingContext: ec
entityName:@"authors"];

[channel openChannel];

/* Create a new author object */

Chapter 9: Working with data 20

author = [authorsDS createObject];

[author takeValue:@"Anonymous" forKey:@"name"];
[authorsDS insertObject:author];

[ec saveChanges];

/* Fetch the newly inserted object from the database */
authors = [authorsDS fetchObjects];
NSLog(@"%@", authors);

/* Update the authors name */
[[authors objectAtIndex:0]

takeValue:@"John Doe" forKey:@"name"];
[ec saveChanges];

NSLog(@"%@", [authorsDS fetchObjects]);

[channel closeChannel];
[pool release];
return O;

9.2 Working with relationships

Heres another more complex example of working with data, we’ll add an author, and some
books, and then traverse the relationship in a couple of different ways.

#include <Foundation/Foundation.h>
#include <EOAccess/EOAccess.h>
#include <EOControl/E0Control.h>

int
main(int arcg, char *argv[], char **envp)
{
NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
EOModelGroup *group = [EOModelGroup defaultGroup];
EOModel *model;
EOAdaptor *adaptor;
EOAdaptorContext *context;
EOAdaptorChannel *channel;
EOEditingContext *ec;
EODatabaseDataSource *authorsDS;
EODataSource *booksDS;
id author;
id book;

model = [group modelNamed:@"library"];

Chapter 9: Working with data

/* Tools do not have resources so we add the model manually. */
if (!model)
{
NSString *path = @"./library.eomodel";
model = [[EOModel alloc] initWithContentsOfFile: path];
[group addModel:model];
[model release];

¥

adaptor = [EOAdaptor adaptorWithModel:model];
context = [adaptor createAdaptorContext];
channel = [context createAdaptorChannel];
ec = [[EOEditingContext alloc] init];
authorsDS
= [[EODatabaseDataSource alloc] initWithEditingContext: ec
entityName:@"authors"];

[channel openChannel];

author = [authorsDS createObject];
[author takeValue:@"Richard Brautigan" forKey:Q@"name"];
[authorsDS insertObject:author] ;

booksDS = [authorsDS dataSourceQualifiedByKey:@"toBooks"];
[booksDS qualifyWithRelationshipKey:@"toBooks" ofObject:author];

book = [booksDS createObject];
[book takeValue:@"The Hawkline Monster" forKey:@"title"];
[booksDS insertObject:book] ;

book = [booksDS createlObject];
[book takeValue:@"Trout Fishing in America" forKey:@"title"];
[booksDS insertObject:book] ;

[ec saveChanges];

/* log the to many relationship from author to books */
NSLog(@"%@ %@",

[author valueForKey:@"name"],

[author valueForKeyPath:@"toBooks.title"]);

/* log the to one relationship from book to author */
NSLog(@"%@", [book valueForKeyPath:@"toAuthor.name"]);

/* traverse to one through the to many through key paths
logging the author once for each book. */

21

Chapter 9: Working with data

NSLog(@"%@", [author valueForKeyPath:@"toBooks.toAuthor.name"]);

[channel closeChannel];
[pool release];
return O;

}

22

Chapter 10: EOInterface 23

10 EOInterface

10.1 Introduction

With GDL2 and EOInterface you can develop graphical applications using the gnustep gui
libraries. It provides the ability to create connections between records from the database,
and graphical controls.

Once a connection has been made between the graphical control and the record, EOInt-
erface will update the record when the data changes in the control, and update the control
when the data or the selection changes. EOInterface is composed of the EODisplayGroup
class and EOAssociation subclasses.

EODisplayGroup contains the records and manages the selection, and notifies EOAsso-
ciations when the selection or selected record changes.

EOAssociation subclasses, associate graphical controls to the display group displaying
the data in the display group, and updating the display group when the control changes the
data. Multi-record associations such as table views can change the display groups selection.

10.2 EODisplayGroup class

EODisplayGroup has an EODataSource, and can fetch and create objects, manage the
selection, filter the objects for display with qualifiers, and sort them with EOSortOrderings.

If you have loaded the GDL2Palette into Gorm you can create an EODisplayGroup by
dragging an entity or a relationship from the outline view in DBModeler, to the document
window in Gorm the display group will be associated with an EODataSource and will be
encoded/decoded to and from the .gorm file. It will be a top level object, visible in the
"Objects’ view of the gorm document. With the name of the entity or relationship dropped.

You can create connections from controls directly to the display group, for example you
could connect a button or menu item to EODisplayGroups -selectNext: action by: Selecting
the control and control-drag from the control to the display group. In the connect inspector,
select -selectNext: and click 'connect’.

Available actions for EODisplayGroup:

1. -fetch:

2. -selectNext:

3. -selectPrevious:
4. -delete:

5. -insert:

Manual creation of a EODisplayGroup by initializing the display group and setting its
dataSource:
EODisplayGroup *dg;
EODataSource *dataSource;

dg = [[EODisplayGroup alloc] init];
[dg setDataSource:dataSource];

Chapter 10: EOInterface 24

10.3 EOAssociation class

An EOAssociation is an abstract base class. Subclasses of EOAssociation can be created to
connect properties of an object in an EODisplayGroup to graphical controls. EOControls
contain aspects, objects, and keys, and display groups.

Where the object is a graphical control, the key, being a key appropriate for KVC on
an enterprise object, and the aspect is a string describing the use for the key. Each asso-

ciation has their own set of aspects and the aspects supported may vary between different
association classes.

Manual creation of an EOControlAssocation:

EOAssociation *association;
EODisplayGroup *authorDG;
NSTextField *nameField;

association = [[EOControlAssociation alloc] initWithObject:nameField];
[association bindAspect:@"value" displayGroup:authorDG key:@"name"];
[association establishConnection];

[association release];

A few things of note, You can bind multiple aspects to an association. When the con-
nection is broken the association will be released. When 'nameField’ is deallocated, the
connection will automatically be broken.

EOAssociations can be created transparently by Gorm with the GDL2Palette. To create
an association with Gorm, Select a control and control-drag from a control to an EODis-
playGroup.

In the connect inspector there is a pop up button which contains a list of the association
classes which are usable with the control. Select an association class and the first column
in the browser changes to a list of the aspects available. Selecting an aspect in the browser

and the second column in the browser will list the available class properties connectable to
the aspect.

Unfortunately while not all association classes and aspects are implemented. They will
unfortunately show up in the connect inspector.

Index

Index

C

class, EOAdaptor. ...
class, EOAttribute. ..
class, EODataSource.

class, EOEditingContext.......................

class, EOEntity......

class, EOGenericRecord

class, EOModel......
class, EOModelGroup

25

class, EORelationship................... 8

K

KVC, Key Value Coding........................ 3

M

model creation

	Introduction
	Concepts
	Key Value Coding
	Setting values through KVC
	Accessing values through KVC
	Key Paths
	Type promotion
	Class specific implementation

	Classes
	Model classes
	Database specific classes
	Data oriented classes
	EOModel class
	overview

	EOEntity class
	overview
	Class properties
	Class name
	Primary Key Attributes
	External name

	EOAttribute class
	overview
	Name
	Column name
	Adaptor value type
	External type
	Value type
	Value class name
	Value factory method name
	Value factory argument type

	EORelationship class
	overview

	EOModelGroup class
	overview

	EOAdaptor class
	overview

	EOAdaptorContext class
	EOAdaptorChannel class
	EODataSource class
	overview
	Fetch objects
	Creating objects
	Inserting objects
	Deleting objects
	Qualified DataSources
	EODatabaseDataSource class

	EOEditingContext class
	overview

	EOGenericRecord class
	overview

	Model Creation
	Example model file
	Creating with DBModeler
	Creating a project.
	Creating a makefile
	Adding Resource Files
	A complete GNUmakefile
	Database creation
	Creating the database with DBModeler
	Database connection
	Working with data
	Adding some data.
	Working with relationships

	EOInterface
	Introduction
	EODisplayGroup class
	EOAssociation class

	Index

