
TM

OBJECT-ORIENTED
PROGRAMMING AND THE
OBJECTIVE-C LANGUAGE

NeXT DEVELOPER’S LIBRARY

NeXT Software, Inc.
900 Chesapeake Drive
Redwood City, CA 94063
U.S.A.

We at NeXT have tried to make the information contained in this publication as accurate and reliable as
possible. Nevertheless, NeXT disclaims any warranty of any kind, whether express or implied, as to any
matter whatsoever relating to this publication, including without limitation the merchantability or fitness
for any particular purpose. NeXT will from time to time revise the software described in this publication
and reserves the right to make such changes without the obligation to notify the purchaser. In no event
shall NeXT be liable for any indirect, special, incidental, or consequential damages arising out of purchase
or use of this publication or the information contained herein.

Restricted Rights Legend: Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013 (or, if applicable, similar clauses at FAR 52.227-19 or NASA FAR Supp. 52.227-86).

Copyright 1993-1995 NeXT Software, Inc. All Rights Reserved.
[6123.01]

NeXT, the NeXT logo, NEXTSTEP, NetInfo, and Objective-C are registered trademarks of NeXT Software,
Inc. The NEXTSTEP logo, Application Kit, Enterprise Object, Enterprise Objects Framework, Interface
Builder, OPENSTEP, the OPENSTEP logo, PDO, Portable Distributed Objects, WebObjects, and
Workspace Manager are trademarks of NeXT Software, Inc. Use in commerce other than as "fair use"
is prohibited by law except by express license from NeXT Software, Inc.

PostScript is a registered trademark of Adobe Systems, Incorporated. Unix is a registered trademark of
UNIX Systems Laboratories, Inc. All other trademarks mentioned belong to their respective owners.

U.S. and foreign patents are pending on NeXT products.
NetInfo: U.S. Patent No. 5,410,691
NEXTSTEP: U.S. Patent Nos. 5,184,124; 5,355,483; 5,388,201; 5,423,039; 5,432,937.
Cryptography: U.S. Patent Nos. 5,159,632; 5,271,061.

Address inquiries concerning usage of NeXT trademarks, designs, or patents to General Counsel, NeXT
Computer, Inc., 900 Chesapeake Drive, Redwood City, CA 94063 USA.}

Writing: Don Larkin and Greg Wilson
Book design: Cindy Steinberg
Illustration: Dan Marusich
Production: Jennifer Sherer
Publications management: Ron Hayden
Cover design: CKS Partners, San Francisco, California

iv

TABLE OF CONTENTS

1 Chapter: Introduction

4 The Development Environment

5 Why Objective-C

6 How the Manual is Organized

7 Conventions

9 Chapter: Object-Oriented Programming

11 Interface and Implementation

15 The Object Model
The Messaging Metaphor

Classes

Mechanisms Of Abstraction

Inheritance

Dynamism

33 Structuring Programs
Outlet Connections

Aggregation and Decomposition

Models and Frameworks

38 Structuring the Programming Task
Collaboration

Organizing Object-Oriented Projects

43 Chapter: The Objective-C Language

45 Objects
id

Dynamic Typing

47 Messages
The Receiver’s Instance Variables

Polymorphism

Dynamic Binding

51 Classes
Inheritance

Class Types

Class Objects

Class Names in Source Code

63 Defining A Class
The Interface

The Implementation

74 How Messaging Works
Selectors

Hidden Arguments

Messages to self and super

89 Chapter: Objective-C Extensions

91 Categories
Adding to a Class

How Categories Are Used

Categories of the Root Class

94 Protocols
How Protocols Are Used

Informal Protocols

Formal Protocols

105 Remote Messaging
Distributed Objects

Language Support

113 Static Options
Static Typing

Getting a Method Address

Getting an Object Data Structure

119 Type Encoding

123 Chapter: The Run-Time System

126 Allocation and Initialization
Allocating Memory For Objects

Initializing New Objects

Combining Allocation and Initialization

Deallocation

137 Forwarding
Forwarding and Multiple Inheritance

Surrogate Objects

Making Forwarding Transparent

v

141 Dynamic Loading

143 Chapter: Objective-C Language Summary

145 Messages

145 Defined Types

146 Preprocessor Directives

146 Compiler Directives

148 Classes

148 Categories

149 Formal Protocols

150 Method Declarations

150 Method Implementations

151 Naming Conventions

153 Chapter: Reference Manual for the Objective-
C Language

156 External Declarations

159 Type Specifiers

160 Type Qualifiers

160 Primary Expressions

163 Glossary

169 INDEX

vi

vii

Introduction

3

Object-oriented programming, like most interesting new developments, builds
on some old ideas, extends them, and puts them together in novel ways. The
result is many-faceted and a clear step forward for the art of programming. An
object-oriented approach makes programs more intuitive to design, faster to
develop, more amenable to modifications, and easier to understand. It leads not
only to new ways of constructing programs, but also to new ways of conceiving
the programming task.

Nevertheless, object-oriented programming presents some formidable
obstacles to those who would like to understand what it’s all about or begin
trying it out. It introduces a new way of doing things that may seem strange at
first, and it comes with an extensive terminology that can take some getting
used to. The terminology will help in the end, but it’s not always easy to learn.
Moreover, there are as yet few full-fledged object-oriented development
environments available to try out. It can be difficult to get started.

That’s where this book comes in. It’s designed to help you become familiar with
object-oriented programming and get over the hurdle its terminology presents.
It spells out some of the implications of object-oriented design and tries to give
you a flavor of what writing an object-oriented program is really like. It fully
documents the Objective-C language, an object-oriented programming
language based on standard C, and introduces the most extensive object-
oriented development environment currently available—OPENSTEP.

The book is intended for readers who might be interested in:

Learning about object-oriented programming,
Finding out about the OPENSTEP development environment, or
Programming in Objective-C.

NeXT supplies its own compiler for the Objective-C language (a modification
of the GNU C compiler) and a run-time system to carry out the dynamic
functions of the language. It has tested and made steady improvements to both
over the years; this book describes the latest release, which includes provisions
for declaring and adopting protocols and setting the scope of instance variables.

Throughout this manual and in other NeXT documentation, the term
“Objective-C” refers to the language as implemented for the OPENSTEP
development environment and presented here.

■

■

■

Introduction

4

The Development Environment

Every object-oriented development environment worthy of the name consists
of at least three parts:

A library of objects and software frameworks and kits
A set of development tools
An object-oriented programming language

OPENSTEP comes with an extensive library. It includes several software
frameworks containing definitions for objects that you can use “off the shelf” or
adapt to your program’s needs. These include the Foundation Framework, the
Application Kit framework (for building a graphical user interface), and others.

OPENSTEP also includes some exceptional development tools for putting
together applications. There’s Interface Builder, a program that lets you design
an application graphically and assemble its user interface on-screen, and Project
Builder, a project-management program that provides graphical access to the
compiler, the debugger, documentation, a program editor, and other tools.

This book is about the third component of the development environment—the
programming language. All OPENSTEP software frameworks are written in the
Objective-C language. To get the benefit of the frameworks, applications must
also use Objective-C. You are not restricted entirely to Objective-C, however;
you are free to incorporate C++ code into your applications as well.

Objective-C is implemented as set of extensions to the C language. It’s
designed to give C a full capability for object-oriented programming, and to do
so in a simple and straightforward way. Its additions to C are few and are mostly
based on Smalltalk, one of the first object-oriented programming languages.

This book both introduces the object-oriented model that Objective-C is based
upon and fully documents the language. It concentrates on the Objective-C
extensions to C, not on the C language itself. There are many good books
available on C; this manual doesn’t attempt to duplicate them.

Because this isn’t a book about C, it assumes some prior acquaintance with that
language. However, it doesn’t have to be an extensive acquaintance. Object-
oriented programming in Objective-C is sufficiently different from procedural
programming in standard C that you won’t be hampered if you’re not an
experienced C programmer.

■

■

■

5

Why Objective-C

The Objective-C language was chosen for the OPENSTEP development
environment for a variety of reasons. First and foremost, it’s an object-oriented
language. The kind of functionality that’s packaged in the OPENSTEP
software frameworks can only be delivered through object-oriented techniques.
This manual will explain how the frameworks work and why this is the case.

Second, because Objective-C is an extension of standard ANSI C, existing C
programs can be adapted to use the software frameworks without losing any of
the work that went into their original development. Since Objective-C
incorporates C, you get all the benefits of C when working within Objective-C.
You can choose when to do something in an object-oriented way (define a new
class, for example) and when to stick to procedural programming techniques
(define a structure and some functions instead of a class).

Moreover, Objective-C is a simple language. Its syntax is small, unambiguous,
and easy to learn. Object-oriented programming, with its self-conscious
terminology and emphasis on abstract design, often presents a steep learning
curve to new recruits. A well-organized language like Objective-C can make
becoming a proficient object-oriented programmer that much less difficult. The
size of this manual is a testament to the simplicity of Objective-C. It’s not a big
book—and Objective-C is fully documented in just two of its chapters.

Objective-C is the most dynamic of the object-oriented languages based on C.
The compiler throws very little away, so a great deal of information is preserved
for use at run time. Decisions that otherwise might be made at compile time can
be postponed until the program is running. This gives Objective-C programs
unusual flexibility and power. For example, Objective-C’s dynamism yields two
big benefits that are hard to get with other nominally object-oriented languages:

Objective-C supports an open style of dynamic binding, a style than can
accommodate a simple architecture for interactive user interfaces. Messages
are not necessarily constrained by either the class of the receiver or the
method selector, so a software framework can allow for user choices at run
time and permit developers freedom of expression in their design.
(Terminology like “dynamic binding,” “message,” “class,” “receiver,” and
“selector” will be explained in due course in this manual.)

Objective-C’s dynamism enables the construction of sophisticated
development tools. An interface to the run-time system provides access to
information about running applications, so it’s possible to develop tools that
monitor, intervene, and reveal the underlying structure and activity of

■

■

Introduction

6

Objective-C applications. Interface Builder could not have been developed
with a less dynamic language.

How the Manual is Organized

This manual is divided into four chapters and two appendices. The chapters are:

Chapter 1, “Object-Oriented Programming,” discusses the rationale for object-
oriented programming languages and introduces much of the terminology. It
develops the ideas behind object-oriented programming techniques. If
you’re already familiar with object-oriented programming and are interested
only in Objective-C, you may want to skip this chapter and go directly to
Chapter 2.

Chapter 2, “The Objective-C Language,” describes the basic concepts and syntax
of Objective-C. It covers many of the same topics as Chapter 1, but looks at
them from the standpoint of the Objective-C language. It reintroduces the
terminology of object-oriented programming, but in the context of Objective-
C.

Chapter 3, “Objective-C Extensions,” concentrates on two of the principal
innovations introduced into the language as part of OPENSTEP Objective-
C—categories and protocols. It also takes up static typing and lesser used
aspects of the language.

Chapter 4, “The Run-Time System,” looks at the NSObject class and how
Objective-C programs interact with the run-time system. In particular, it
examines the paradigms for allocating and initializing new objects,
dynamically loading new classes at run time, and forwarding messages to
other objects.

The appendices contain reference material that might be useful for
understanding the language. They are:

Appendix A, “Objective-C Language Summary,” lists and briefly comments on all
of the Objective-C extensions to the C language.

Appendix B, “Reference Manual for the Objective-C Language,” presents, without
comment, a formal grammar of the Objective-C extensions to the C language.
This reference manual is meant to be read as a companion to the reference
manual for C presented in The C Programming Language by Brian W. Kernighan
and Dennis M. Ritchie, published by Prentice Hall.

■

■

■

■

■

■

7

Conventions

Where this manual discusses functions, methods, and other programming
elements, it makes special use of bold and italic fonts. Bold denotes words or
characters that are to be taken literally (typed as they appear). Italic denotes
words that represent something else or can be varied. For example, the syntax

@interface ClassName (CategoryName)

means that @interface and the two parentheses are required, but that you can
choose the class name and category name. Where method syntax is shown, the
method name is bold, parameters are italic, and other elements (mainly data
types) are in regular font. For example:

– (void)encodeWithCoder:(NSCoder *)coder

Where example code is shown, ellipsis indicates the parts, often substantial
parts, that have been omitted:

The conventions used in the reference appendix are described in that appendix.

- (void)encodeWithCoder:(NSCoder *)coder
{
 [super encodeWithCoder:coder];
 . . .
}

Introduction

8

Object-Oriented ProgrammingChapter 1

11

Programming languages have traditionally divided the world into two parts—
data and operations on data. Data is static and immutable, except as the
operations may change it. The procedures and functions that operate on data
have no lasting state of their own; they’re useful only in their ability to affect
data.

This division is, of course, grounded in the way computers work, so it’s not one
that you can easily ignore or push aside. Like the equally pervasive distinctions
between matter and energy and between nouns and verbs, it forms the
background against which we work. At some point, all programmers—even
object-oriented programmers—must lay out the data structures that their
programs will use and define the functions that will act on the data.

With a procedural programming language like C, that’s about all there is to it.
The language may offer various kinds of support for organizing data and
functions, but it won’t divide the world any differently. Functions and data
structures are the basic elements of design.

Object-oriented programming doesn’t so much dispute this view of the world as
restructure it at a higher level. It groups operations and data into modular units
called objects and lets you combine objects into structured networks to form a
complete program. In an object-oriented programming language, objects and
object interactions are the basic elements of design.

Every object has both state (data) and behavior (operations on data). In that,
they’re not much different from ordinary physical objects. It’s easy to see how a
mechanical device, such as a pocket watch or a piano, embodies both state and
behavior. But almost anything that’s designed to do a job does too. Even simple
things with no moving parts such as an ordinary bottle combine state (how full
the bottle is, whether or not it’s open, how warm its contents are) with behavior
(the ability to dispense its contents at various flow rates, to be opened or closed,
to withstand high or low temperatures).

It’s this resemblance to real things that gives objects much of their power and
appeal. They can not only model components of real systems, but equally as
well fulfill assigned roles as components in software systems.

Interface and Implementation

As humans, we’re constantly faced with myriad facts and impressions that we
must make sense of. To do so, we have to abstract underlying structure away
from surface details and discover the fundamental relations at work.

Chapter 1 Object-Oriented Programming

12

Abstractions reveal causes and effects, expose patterns and frameworks, and
separate what’s important from what’s not. They’re at the root of understanding.

To invent programs, you need to be able to capture the same kinds of
abstractions and express them in the program design.

It’s the job of a programming language to help you do this. The language should
facilitate the process of invention and design by letting you encode abstractions
that reveal the way things work. It should let you make your ideas concrete in
the code you write. Surface details shouldn’t obscure the architecture of your
program.

All programming languages provide devices that help express abstractions. In
essence, these devices are ways of grouping implementation details, hiding
them, and giving them, at least to some extent, a common interface—much as a
mechanical object separates its interface from its implementation.

Looking at such a unit from the inside, as the implementor, you’d be concerned
with what it’s composed of and how it works. Looking at it from the outside, as
the user, you’re concerned only with what it is and what it does. You can look
past the details and think solely in terms of the role that the unit plays at a higher
level.

The principal units of abstraction in the C language are structures and functions.
Both, in different ways, hide elements of the implementation:

On the data side of the world, C structures group data elements into larger
units which can then be handled as single entities. While some code must
delve inside the structure and manipulate the fields separately, much of the
program can regard it as a single thing—not as a collection of elements, but as
what those elements taken together represent. One structure can include

9

10
11

8
7 6

implementationinterface

■

13

others, so a complex arrangement of information can be built from simpler
layers.

In modern C, the fields of a structure live in their own name space—that is,
their names won’t conflict with identically-named data elements outside the
structure. Partitioning the program name space is essential for keeping
implementation details out of the interface. Imagine, for example, the
enormous task of assigning a different name to every piece of data in a large
program and of making sure new names don’t conflict with old ones.

On the procedural side of the world, functions encapsulate behaviors that can
be used repeatedly without being reimplemented. Data elements local to a
function, like the fields within a structure, are protected within their own
name space. Functions can reference (call) other functions, so quite complex
behaviors can be built from smaller pieces.

Functions are reusable. Once defined, they can be called any number of
times without again considering the implementation. The most generally
useful functions can be collected in libraries and reused in many different
applications. All the user needs is the function interface, not the source code.

However, unlike data elements, functions aren’t partitioned into separate
name spaces. Each function must have a unique name. Although the
function may be reusable, its name is not.

C structures and functions are able to express significant abstractions, but they
maintain the distinction between data and operations on data. In a procedural
programming language, the highest units of abstraction still live on one side or
the other of the data-versus-operations divide. The programs you design must
always reflect, at the highest level, the way the computer works.

Object-oriented programming languages don’t lose any of the virtues of
structures and functions. But they go a step further and add a unit capable of
abstraction at a higher level, a unit that hides the interaction between a function
and its data.

Suppose, for example, that you have a group of functions that all act on a
particular data structure. You want to make those functions easier to use by, as
far as possible, taking the structure out of the interface. So you supply a few
additional functions to manage the data. All the work of manipulating the data
structure—allocating it, initializing it, getting information from it, modifying
values within it, keeping it up to date, and freeing it—is done through the
functions. All the user does is call the functions and pass the structure to them.

■

Chapter 1 Object-Oriented Programming

14

With these changes, the structure has become an opaque token that other
programmers never need to look inside. They can concentrate on what the
functions do, not how the data is organized. You’ve taken the first step toward
creating an object.

The next step is to give this idea support in the programming language and
completely hide the data structure so that it doesn’t even have to be passed
between the functions. The data becomes an internal implementation detail; all
that’s exported to users is a functional interface. Because objects completely
encapsulate their data (hide it), users can think of them solely in terms of their
behavior.

With this step, the interface to the functions has become much simpler. Callers
don’t need to know how they’re implemented (what data they use). It’s fair now
to call this an “object.”

The hidden data structure unites all of the functions that share it. So an object
is more than a collection of random functions; it’s a bundle of related behaviors
that are supported by shared data. To use a function that belongs to an object,
you first create the object (thus giving it its internal data structure), then tell the
object which function it should invoke. You begin to think in terms of what the
object does, rather than in terms of the individual functions.

This progression from thinking about functions and data structures to thinking
about object behaviors is the essence of object-oriented programming. It may
seem unfamiliar at first, but as you gain experience with object-oriented
programming, you’ll find it’s a more natural way to think about things. Everyday
programming terminology is replete with analogies to real-world objects of
various kinds—lists, containers, tables, controllers, even managers.
Implementing such things as programming objects merely extends the analogy
in a natural way.

A programming language can be judged by the kinds of abstractions that it
enables you to encode. You shouldn’t be distracted by extraneous matters or
forced to express yourself using a vocabulary that doesn’t match the reality
you’re trying to capture.

If, for example, you must always tend to the business of keeping the right data
matched with the right procedure, you’re forced at all times to be aware of the
entire program at a low level of implementation. While you might still invent
programs at a high level of abstraction, the path from imagination to
implementation can become quite tenuous—and more and more difficult as
programs become bigger and more complicated.

15

By providing another, higher level of abstraction, object-oriented programming
languages give you a larger vocabulary and a richer model to program in.

The Object Model

The insight of object-oriented programming is to combine state and behavior—
data and operations on data—in a high-level unit, an object, and to give it
language support. An object is a group of related functions and a data structure
that serves those functions. The functions are known as the object’s methods, and
the fields of its data structure are its instance variables. The methods wrap around
the instance variables and hide them from the rest of the program:

Likely, if you’ve ever tackled any kind of difficult programming problem, your
design has included groups of functions that work on a particular kind of data—
implicit “objects” without the language support. Object-oriented programming
makes these function groups explicit and permits you to think in terms of the
group, rather than its components. The only way to an object’s data, the only
interface, is through its methods.

By combining both state and behavior in a single unit, an object becomes more
than either alone; the whole really is greater than the sum of its parts. An object
is a kind of self-sufficient “subprogram” with jurisdiction over a specific
functional area. It can play a full-fledged modular role within a larger program
design.

data

method

m
et

h
od

method

m
eth

od

Terminology

Object-oriented terminology varies from
language to language. For example, in C++
methods are called “member functions” and

instance variables are “data members.” This
manual uses the terminology of Objective-C,
which has its basis in Smalltalk.

Chapter 1 Object-Oriented Programming

16

For example, if you were to write a program that modeled home water usage,
you might invent objects to represent the various components of the water-
delivery system. One might be a Faucet object that would have methods to start
and stop the flow of water, set the rate of flow, return the amount of water
consumed in a given period, and so on. To do this work, a Faucet object would
need instance variables to keep track of whether the tap is open or shut, how
much water is being used, and where the water is coming from.

Clearly, a programmatic Faucet can be smarter than a real one (it’s analogous to
a mechanical faucet with lots of gauges and instruments attached). But even a
real faucet, like any system component, exhibits both state and behavior. To
effectively model a system, you need programming units, like objects, that also
combine state and behavior.

A program consists of a network of interconnected objects that call upon each
other to solve a part of the puzzle. Each object has a specific role to play in the
overall design of the program and is able to communicate with other objects.
Objects communicate through messages, requests to perform a method.

The objects in the network won’t all be the same. For example, in addition to
Faucets, the program that models water usage might also have WaterPipe
objects that can deliver water to the Faucets and Valve objects to regulate the
flow among WaterPipes. There could be a Building object to coordinate a set of
WaterPipes, Valves, and Faucets, some Appliance objects—corresponding to
dishwashers, toilets, and washing machines—that can turn Valves on and off,
and maybe some Users to work the Appliances and Faucets. When a Building
object is asked how much water is being used, it might call upon each Faucet

data

data

data

message

17

and Valve to report its current state. When a User starts up an Appliance, the
Appliance will need to turn on a Valve to get the water it requires.

The Messaging Metaphor
Every programming paradigm comes with its own terminology and metaphors.
None more so than object-oriented programming. Its jargon invites you to think
about what goes on in a program from a particular perspective.

There’s a tendency, for example, to think of objects as “actors” and to endow
them with human-like intentions and abilities. It’s tempting sometimes to talk
about an object “deciding” what to do about a situation, “asking” other objects
for information, “introspecting” about itself to get requested information,
“delegating” responsibility to another object, or “managing” a process.

Rather than think in terms of functions or methods doing the work, as you would
in a procedural programming language, this metaphor asks you to think of
objects as “performing” their methods. Objects are not passive containers for
state and behavior, but are said to be the agents of the program’s activity.

This is actually a useful metaphor. An object is like an actor in a couple of
respects: It has a particular role to play within the overall design of the program,
and within that role it can act fairly independently of the other parts of the
program. It interacts with other objects as they play their own roles, but is self-
contained and to a certain extent can act on its own. Like an actor on stage, it
can’t stray from the script, but the role it plays it can be multi-faceted and quite
complex.

The idea of objects as actors fits nicely with the principal metaphor of object-
oriented programming—the idea that objects communicate through
“messages.” Instead of calling a method as you would a function, you send a
message to an object requesting it to perform one of its methods.

Although it can take some getting used to, this metaphor leads to a useful way
of looking at methods and objects. It abstracts methods away from the particular
data they act on and concentrates on behavior instead. For example, in an
object-oriented programming interface, a start method might initiate an
operation, an archive method might archive information, and a draw method
might produce an image. Exactly which operation is initiated, which
information is archived, and which image is drawn isn’t revealed by the method
name. Different objects might perform these methods in different ways.

Thus, methods are a vocabulary of abstract behaviors. To invoke one of those
behaviors, you have to make it concrete by associating the method with an
object. This is done by naming the object as the “receiver” of a message. The

Chapter 1 Object-Oriented Programming

18

object you choose as receiver will determine the exact operation that’s initiated,
the data that’s archived, or the image that’s drawn.

Since methods belong to objects, they can be invoked only through a particular
receiver (the owner of the method and of the data structure the method will act
on). Different receivers can have different implementations of the same
method, so different receivers can do different things in response to the same
message. The result of a message can’t be calculated from the message or
method name alone; it also depends on the object that receives the message.

By separating the message (the requested behavior) from the receiver (the
owner of a method that can respond to the request), the messaging metaphor
perfectly captures the idea that behaviors can be abstracted away from their
particular implementations.

Classes
A program can have more than one object of the same kind. The program that
models water usage, for example, might have several Faucets and WaterPipes
and perhaps a handful of Appliances and Users. Objects of the same kind are
said to belong to the same class. All members of a class are able to perform the
same methods and have matching sets of instance variables. They also share a
common definition; each kind of object is defined just once.

In this, objects are similar to C structures. Declaring a structure defines a type.
For example, this declaration

defines the struct key type. Once defined, the structure name can be used to
produce any number of instances of the type:

The declaration is a template for a kind of structure, but it doesn’t create a
structure that the program can use. It takes another step to allocate memory for
an actual structure of that type, a step that can be repeated any number of times.

struct key {
 char *word;
 int count;
};

struct key a, b, c, d;
struct key *p = malloc(sizeof(struct key) * MAXITEMS);

19

Similarly, defining an object creates a template for a kind of object. It defines a
class of objects. The template can be used to produce any number of similar
objects—instances of the class. For example, there would be a single definition
of the Faucet class. Using this definition, a program could allocate as many
Faucet instances as it needed.

A class definition is like a structure definition in that it lays out an arrangement
of data elements (instance variables) that become part of every instance. Each
instance has memory allocated for its own set of instance variables, which store
values peculiar to the instance.

However, a class definition differs from a structure declaration in that it also
includes methods that specify the behavior of class members. Every instance is
characterized by its access to the methods defined for the class. Two objects with
equivalent data structures but different methods would not belong to the same
class.

Modularity
To a C programmer, a “module” is nothing more than a file containing source
code. Breaking a large (or even not-so-large) program into different files is a
convenient way of splitting it into manageable pieces. Each piece can be
worked on independently and compiled alone, then integrated with other
pieces when the program is linked. Using the static storage class designator to
limit the scope of names to just the files where they’re declared enhances the
independence of source modules.

This kind of module is a unit defined by the file system. It’s a container for
source code, not a logical unit of the language. What goes into the container is
up to each programmer. You can use them to group logically related parts of the
code, but you don’t have to. Files are like the drawers of a dresser; you can put
your socks in one drawer, underwear in another, and so on, or you can use
another organizing scheme or simply choose to mix everything up.

Access To Methods

It’s convenient to think of methods as being
part of an object, just as instance variables
are. As in the previous figure, methods can
be diagrammed as surrounding the object’s
instance variables.

But, of course, methods aren’t grouped with
instance variables in memory. Memory is
allocated for the instance variables of each

new object, but there’s no need to allocate
memory for methods. All an instance needs
is access to its methods, and all instances of
the same class share access to the same set
of methods. There’s only one copy of the
methods in memory, no matter how many
instances of the class are created.

Chapter 1 Object-Oriented Programming

20

Object-oriented programming languages support the use of file containers for
source code, but they also add a logical module to the language—class
definitions. As you’d expect, it’s often the case that each class is defined in its
own source file—logical modules are matched to container modules.

In Objective-C, for example, it would be possible to define the part of the Valve
class that interacts with WaterPipes in the same file that defines the WaterPipe
class, thus creating a container module for WaterPipe-related code and splitting
Valve class into more than one file. The Valve class definition would still act as a
modular unit within the construction of the program—it would still be a logical
module—no matter how many files the source code was located in.

The mechanisms that make class definitions logical units of the language are
discussed in some detail under “Mechanisms Of Abstraction” below.

Reusability
A principal goal of object-oriented programming is to make the code you write
as reusable as possible—to have it serve many different situations and
applications—so that you can avoid reimplementing, even if in only slightly
different form, something that’s already been done.

Reusability is influenced by a variety of different factors, including:

How reliable and bug-free the code is
How clear the documentation is
How simple and straightforward the programming interface is
How efficiently the code performs its tasks
How full the feature set is

Clearly, these factors don’t apply just to the object model. They can be used to
judge the reusability of any code—standard C functions as well as class
definitions. Efficient and well documented functions, for example, would be
more reusable than undocumented and unreliable ones.

Nevertheless, a general comparison would show that class definitions lend
themselves to reusable code in ways that functions do not. There are various
things you can do to make functions more reusable—passing data as arguments
rather than assuming specifically-named global variables, for example. Even
so, it turns out that only a small subset of functions can be generalized beyond
the applications they were originally designed for. Their reusability is inherently
limited in at least three ways:

Function names are global variables; each function must have a unique name
(except for those declared static). This makes it difficult to rely heavily on
library code when building a complex system. The programming interface

■

■

■

■

■

■

21

would be hard to learn and so extensive that it couldn’t easily capture
significant generalizations.

Classes, on the other hand, can share programming interfaces. When the
same naming conventions are used over and over again, a great deal of
functionality can be packaged with a relatively small and easy-to-understand
interface.

Functions are selected from a library one at a time. It’s up to programmers to
pick and choose the individual functions they need.

In contrast, objects come as packages of functionality, not as individual
methods and instance variables. They provide integrated services, so users
of an object-oriented library won’t get bogged down piecing together their
own solutions to a problem.

Functions are typically tied to particular kinds of data structures devised for a
specific program. The interaction between data and function is an
unavoidable part of the interface. A function is useful only to those who agree
to use the same kind of data structures it accepts as arguments.

Because it hides its data, an object doesn’t have this problem. This is one of
the principal reasons why classes can be reused more easily than functions.

An object’s data is protected and won’t be touched by any other part of the
program. Methods can therefore trust its integrity. They can be sure that
external access hasn’t put it in an illogical or untenable state. This makes an
object data structure more reliable than one passed to a function, so methods can
depend on it more. Reusable methods are consequently easier to write.

Moreover, because an object’s data is hidden, a class can be reimplemented to
use a different data structure without affecting its interface. All programs that
use the class can pick up the new version without changing any source code; no
reprogramming is required.

Mechanisms Of Abstraction
To this point, objects have been introduced as units that embody higher-level
abstractions and as coherent role-players within an application. However, they
couldn’t be used this way without the support of various language mechanisms.
Two of the most important mechanisms are:

Encapsulation, and
Polymorphism.

■

■

■

■

Chapter 1 Object-Oriented Programming

22

Encapsulation keeps the implementation of an object out of its interface, and
polymorphism results from giving each class its own name space. The following
sections discuss each of these mechanisms in turn.

Encapsulation
To design effectively at any level of abstraction, you need to be able to leave
details of implementation behind and think in terms of units that group those
details under a common interface. For a programming unit to be truly effective,
the barrier between interface and implementation must be absolute. The
interface must encapsulate the implementation—hide it from other parts of the
program. Encapsulation protects an implementation from unintended actions
and inadvertent access.

In C, a function is clearly encapsulated; its implementation is inaccessible to
other parts of the program and protected from whatever actions might be taken
outside the body of the function. Method implementations are similarly
encapsulated, but, more importantly, so are an object’s instance variables.
They’re hidden inside the object and invisible outside it. The encapsulation of
instance variables is sometimes also called information hiding.

It might seem, at first, that hiding the information in instance variables would
constrain your freedom as a programmer. Actually, it gives you more room to act
and frees you from constraints that might otherwise be imposed. If any part of
an object’s implementation could leak out and become accessible or a concern
to other parts of the program, it would tie the hands both of the object’s
implementor and of those who would use the object. Neither could make
modifications without first checking with the other.

Suppose, for example, that you’re interested in the Faucet object being
developed for the program that models water use and you want to incorporate it
in another program you’re writing. Once the interface to the object is decided,
you don’t have to be concerned as others work on it, fix bugs, and find better
ways to implement it. You’ll get the benefit of these improvements, but none of
them will affect what you do in your program. Because you’re depending solely
on the interface, nothing they do can break your code. Your program is insulated
from the object’s implementation.

Moreover, although those implementing the Faucet object would be interested
in how you’re using the class and might try to make sure that it meet your needs,
they don’t have to be concerned with the way you’re writing your code. Nothing
you do can touch the implementation of the object or limit their freedom to
make changes in future releases. The implementation is insulated from
anything that you or other users of the object might do.

23

Polymorphism
This ability of different objects to respond, each in its own way, to identical
messages is called polymorphism.

Polymorphism results from the fact that every class lives in its own name space.
The names assigned within a class definition won’t conflict with names assigned
anywhere outside it. This is true both of the instance variables in an object’s data
structure and of the object’s methods:

Just as the fields of a C structure are in a protected name space, so are an
object’s instance variables.

Method names are also protected. Unlike the names of C functions, method
names aren’t global symbols. The name of a method in one class can’t conflict
with method names in other classes; two very different classes could
implement identically named methods.

Method names are part of an object’s interface. When a message is sent
requesting an object to do something, the message names the method the object
should perform. Because different objects can have different methods with the
same name, the meaning of a message must be understood relative to the
particular object that receives the message. The same message sent to two
different objects could invoke two different methods.

The main benefit of polymorphism is that it simplifies the programming
interface. It permits conventions to be established that can be reused in class
after class. Instead of inventing a new name for each new function you add to a
program, the same names can be reused. The programming interface can be
described as a set of abstract behaviors, quite apart from the classes that
implement them.

■

■

Overloading

The terms “polymorphism” and “argument
overloading” refer basically to the same
thing, but from slightly different points of
view. Polymorphism takes a pluralistic point
of view and notes that several classes can
each have a method with the same name.
Argument overloading takes the point of the
view of the method name and notes that it
can have different effects depending on

what kind of object it applies to.

Operator overloading is similar. It refers to
the ability to turn operators of the language
(such as ‘==’ and ‘+’ in C) into methods that
can be assigned particular meanings for
particular kinds of objects. Objective-C
implements polymorphism of method names,
but not operator overloading.

Chapter 1 Object-Oriented Programming

24

For example, instead of defining an amountConsumed method for an Appliance
object to report the amount of water it uses over a given period of time, an
amountDispensedAtFaucet method for a Faucet to report virtually the same thing,
and a cumulativeUsage method for the Building object to report the cumulative
total for the whole building—requiring programmers to learn three different
names for what is conceptually the same operation—each class can simply have
a waterUsed method.

Polymorphism also permits code to be isolated in the methods of different
objects rather than be gathered in a single function that enumerates all the
possible cases. This makes the code you write more extensible and reusable.
When a new case comes along, you don’t have to reimplement existing code, but
only add a new class with a new method, leaving the code that’s already written
alone.

For example, suppose you have code that sends a draw message to an object.
Depending on the receiver, the message might produce one of two possible
images. When you want to add a third case, you don’t have to change the
message or alter existing code, but merely allow another object to be assigned as
the message receiver.

Inheritance
The easiest way to explain something new is to start with something old. If you
want to describe what a “schooner” is, it helps if your listeners already know
what “sailboat” means. If you want to explain how a harpsichord works, it’s best
if you can assume your audience has already looked inside a piano, or has seen
a guitar played, or at least is familiar with the idea of a “musical instrument.”

The same is true if want to define a new kind of object; the description is
simpler if it can start from the definition of an existing object.

With this in mind, object-oriented programming languages permit you to base a
new class definition on a class already defined. The base class is called a
superclass; the new class is its subclass. The subclass definition specifies only how
it differs from the superclass; everything else is taken to be the same.

Nothing is copied from superclass to subclass. Instead, the two classes are
connected so that the subclass inherits all the methods and instance variables of
its superclass, much as you want your listener’s understanding of “schooner” to
inherit what they already know about sailboats. If the subclass definition were
empty (if it didn’t define any instance variables or methods of its own), the two
classes would be identical (except for their names) and share the same
definition. It would be like explaining what a “fiddle” is by saying that it’s
exactly the same as a “violin.” However, the reason for declaring a subclass isn’t

25

to generate synonyms, but to create something at least a little different from its
superclass. You’d want to let the fiddle play bluegrass in addition to classical
music.

Class Hierarchies
Any class can be used as a superclass for a new class definition. A class can
simultaneously be a subclass of another class and a superclass for its own
subclasses. Any number of classes can thus be linked in a hierarchy of
inheritance.

As the above figure shows, every inheritance hierarchy begins with a root class
that has no superclass. From the root class, the hierarchy branches downward.
Each class inherits from its superclass, and through its superclass, from all the
classes above it in the hierarchy. Every class inherits from the root class.

Each new class is the accumulation of all the class definitions in its inheritance
chain. In the example above, class D inherits both from C, its superclass, and the
root class. Members of the D class will have methods and instance variables
defined in all three classes—D, C, and root.

Typically, every class has just one superclass and can have an unlimited number
of subclasses. However, in some object-oriented programming languages
(though not in Objective-C), a class can have more than one superclass; it can
inherit through multiple sources. Instead of a single hierarchy that branches
downward as shown in the above figure, multiple inheritance lets some branches
of the hierarchy (or of different hierarchies) merge.

Subclass Definitions
A subclass can make three kinds of changes to the definition it inherits through
its superclass:

It can expand the class definition it inherits by adding new methods and
instance variables. This is the most common reason for defining a subclass.

root

C

E FD

A

B

■

Chapter 1 Object-Oriented Programming

26

Subclasses always add new methods, and new instance variables if the
methods require it.

It can modify the behavior it inherits by replacing an existing method with a
new version. This is done by simply implementing a new method with the
same name as one that’s inherited. The new version overrides the inherited
version. (The inherited method doesn’t disappear; it’s still valid for the class
that defined it and other classes that inherit it.)

It can refine or extend the behavior it inherits by replacing an existing method
with a new version, but still retain the old version by incorporating it in the
new method. This is done by sending a message to perform the old version in
the body of the new method. Each class in an inheritance chain can
contribute part of a method’s behavior. In the previous figure, for example,
class D might override a method defined in class C and incorporate C’s
version, while C’s version incorporates a version defined in the root class.

Subclasses thus tend to fill out a superclass definition, making it more specific
and specialized. They add, and sometimes replace, code rather than subtract it.
Note that methods generally can’t be disinherited and instance variables can’t
be removed or overridden.

Uses of Inheritance
The classic examples of an inheritance hierarchy are borrowed from animal and
plant taxonomies. For example, there could a class corresponding to the
Pinaceae (pine) family of trees. Its subclasses could be Fir, Spruce, Pine,
Hemlock, Tamarack, DouglasFir, and TrueCedar, corresponding to the various
genera that make up the family. The Pine class might have SoftPine and
HardPine subclasses, with WhitePine, SugarPine, and BristleconePine as
subclasses of SoftPine, and PonderosaPine, JackPine, MontereyPine, and
RedPine as subclasses of HardPine.

There’s rarely a reason to program a taxonomy like this, but the analogy is a good
one. Subclasses tend to specialize a superclass or adapt it to a special purpose,
much as a species specializes a genus.

Here are some typical uses of inheritance:

Reusing code. If two or more classes have some things in common but also
differ in some ways, the common elements can be put in an a single class
definition that the other classes inherit. The common code is shared and need
only be implemented once.

For example, Faucet, Valve, and WaterPipe objects, defined for the program
that models water use, all need a connection to a water source and they all

■

■

■

27

should be able to record the rate of flow. These commonalities can be
encoded once, in a class that the Faucet, Valve, and WaterPipe classes inherit
from. A Faucet can be said to be a kind of Valve, so perhaps the Faucet class
would inherit most of what it is from Valve, and add very little of its own.

Setting up a protocol. A class can declare a number of methods that its
subclasses are expected to implement. The class might have empty versions
of the methods, or it might implement partial versions that are to be
incorporated into the subclass methods. In either case, its declarations
establish a protocol that all its subclasses must follow.

When different classes implement similarly named methods, a program is
better able to make use of polymorphism in its design. Setting up a protocol
that subclasses must implement helps enforce these naming conventions.

Delivering generic functionality. One implementor can define a class that
contains a lot of basic, general code to solve a problem, but doesn’t fill in all
the details. Other implementors can then create subclasses to adapt the
generic class to their specific needs. For example, the Appliance class in the
program that models water use might define a generic water-using device that
subclasses would turn into specific kinds of appliances.

Inheritance is thus both a way to make someone else’s programming task
easier and a way to separate levels of implementation.

Making slight modifications. When inheritance is used to deliver generic
functionality, set up a protocol, or reuse code, a class is devised that other
classes are expected to inherit from. But you can also use inheritance to
modify classes that aren’t intended as superclasses. Suppose, for example,
that there’s an object that would work well in your program, but you’d like to
change one or two things that it does. You can make the changes in a subclass.

Previewing possibilities. Subclasses can also be used to factor out alternatives
for testing purposes. For example, if a class is to be encoded with a particular
user interface, alternative interfaces can be factored into subclasses during
the design phase of the project. Each alternative can then be demonstrated to
potential users to see which they prefer. When the choice is made, the
selected subclass can be reintegrated into its superclass.

Dynamism
At one time in programming history, the question of how much memory a
program would use was settled when the source code was compiled and linked.
All the memory the program would ever need was set aside for it as it was
launched. This memory was fixed; it could neither grow nor shrink.

■

■

■

■

Chapter 1 Object-Oriented Programming

28

In hindsight, it’s evident what a serious constraint this was. It limited not only
how programs were constructed, but what you could imagine a program doing.
It constrained design, not just programming technique. Functions (like malloc())
that dynamically allocate memory as a program runs opened possibilities that
didn’t exist before.

Compile-time and link-time constraints are limiting because they force issues to
be decided from information found in the programmer’s source code, rather than
from information obtained from the user as the program runs.

Although dynamic allocation removes one such constraint, many others, equally
as limiting as static memory allocation, remain. For example, the elements that
make up an application must be matched to data types at compile time. And the
boundaries of an application are typically set at link time. Every part of the
application must be united in a single executable file. New modules and new
types can’t be introduced as the program runs.

Object-oriented programming seeks to overcome these limitations and to make
programs as dynamic and fluid as possible. It shifts much of the burden of
decision making from compile time and link time to run time. The goal is to let
program users decide what will happen, rather than constrain their actions
artificially by the demands of the language and the needs of the compiler and
linker.

Three kinds of dynamism are especially important for object-oriented design:

Dynamic typing, waiting until run time to determine the class of an object
Dynamic binding, determining at run time what method to invoke
Dynamic loading, adding new components to a program as it runs

Dynamic Typing
The compiler typically complains if the code you write assigns a value to a type
that can’t accommodate it. You might see warnings like these:

Type checking is useful, but there are times when it can interfere with the
benefits you get from polymorphism, especially if the type of every object must
be known to the compiler.

Suppose, for example, that you want to send an object a message to perform the
start method. Like other data elements, the object is represented by a variable.

■

■

■

incompatible types in assignment
assignment of integer from pointer lacks a cast

29

If the variable’s type (its class) must be known at compile time, it would be
impossible to let run-time factors influence the decision about what kind of
object should be assigned to the variable. If the class of the variable is fixed in
source code, so is the version of start that the message invokes.

If, on the other hand, it’s possible to wait until run time to discover the class of
the variable, any kind of object could be assigned to it. Depending on the class
of the receiver, the start message might invoke different versions of the method
and produce very different results.

Dynamic typing thus gives substance to dynamic binding (discussed next). But
it does more than that. It permits associations between objects to be determined
at run time, rather than forcing them to be encoded in a static design. For
example, a message could pass an object as an argument without declaring
exactly what kind of object it is—that is, without declaring its class. The
message receiver might then send its own messages to the object, again without
ever caring about what kind of object it is. Because the receiver uses the object
it’s passed to do some of its work, it is in a sense customized by an object of
indeterminate type (indeterminate in source code, that is, not at run time).

Dynamic Binding
In standard C, you can declare a set of alternative functions, like the standard
string-comparison functions,

and declare a pointer to a function that has the same return and argument types:

You can then wait until run time to determine which function to assign to the
pointer,

int strcmp(const char *, const char *); /* case sensitive */

int strcasecmp(const char *, const char *); /*case insensitive*/

int (* compare)(const char *, const char *);

if (**argv == ’i’)

 compare = strcasecmp;

else

 compare = strcmp;

Chapter 1 Object-Oriented Programming

30

and call the function through the pointer:

This is akin to what in object-oriented programming is called dynamic binding,
delaying the decision of exactly which method to perform until the program is
running.

Although not all object-oriented languages support it, dynamic binding can be
routinely and transparently accomplished through messaging. You don’t have to
go through the indirection of declaring a pointer and assigning values to it as
shown in the example above. You also don’t have to assign each alternative
procedure a different name.

Messages invoke methods indirectly. Every message expression must find a
method implementation to “call.” To find that method, the messaging
machinery must check the class of the receiver and locate its implementation of
the method named in the message. When this is done at run time, the method
is dynamically bound to the message. When it’s done by the compiler, the
method is statically bound.

if (compare(s1, s2))

 . . .

Late Binding

Some object-oriented programming
languages (notably C++) require a message
receiver to be statically typed in source
code, but don’t require the type to be exact.
An object can be typed to its own class or to
any class that it inherits from.

The compiler therefore can’t tell whether the
message receiver is an instance of the class
specified in the type declaration, an instance
of a subclass, or an instance of some more
distantly derived class. Since it doesn’t know
the exact class of the receiver, it can’t know
which version of the method named in the
message to invoke.

In this circumstance, the choice is between
treating the receiver as if it were an instance
of the specified class and simply bind the
method defined for that class to the
message, or waiting until some later time to
resolve the situation. In C++, the decision is
postponed to link time for methods (member
functions) that are declared virtual.

This is sometimes referred to as “late
binding” rather than “dynamic binding.”
While “dynamic” in the sense that it happens
at run time, it carries with it strict compile-
time type constraints. As discussed here
(and implemented in Objective-C), “dynamic
binding” is unconstrained.

31

Dynamic binding is possible even in the absence of dynamic typing, but it’s not
very interesting. There’s little benefit in waiting until run time to match a
method to a message when the class of the receiver is fixed and known to the
compiler. The compiler could just as well find the method itself; the run-time
result won’t be any different.

However, if the class of the receiver is dynamically typed, there’s no way for the
compiler to determine which method to invoke. The method can be found only
after the class of the receiver is resolved at run time. Dynamic typing thus entails
dynamic binding.

Dynamic typing also makes dynamic binding interesting, for it opens the
possibility that a message might have very different results depending on the
class of the receiver. Run-time factors can influence the choice of receiver and
the outcome of the message.

Dynamic typing and binding also open the possibility that the code you write
can send messages to objects not yet invented. If object types don’t have to be
decided until run time, you can give others the freedom to design their own
classes and name their own data types, and still have your code send messages
to their objects. All you need to agree on are the messages, not the data types.

Note: Dynamic binding is routine in Objective-C. You don’t need to arrange for
it specially, so your design never needs to bother with what’s being done when.

Dynamic Loading
The usual rule has been that, before a program can run, all its parts must be
linked together in one file. When it’s launched, the entire program is loaded into
memory at once.

Some object-oriented programming environments overcome this constraint and
allow different parts of an executable program to be kept in different files. The
program can be launched in bits and pieces as they’re needed. Each piece is
dynamically loaded and linked with the rest of program as it’s launched. User
actions can determine which parts of the program are in memory and which
aren’t.

Only the core of a large program needs to be loaded at the start. Other modules
can be added as the user requests their services. Modules the user doesn’t
request make no memory demands on the system.

Dynamic loading raises interesting possibilities. For example, an entire program
wouldn’t have to be developed at once. You could deliver your software in pieces
and update one part of it at a time. You could devise a program that groups many
different tools under a single interface, and load just the tools the user wants.

Chapter 1 Object-Oriented Programming

32

The program could even offer sets of alternative tools to do the same job. The
user would select one tool from the set and only that tool would be loaded. It’s
not hard to imagine the possibilities. But because dynamic loading is relatively
new, it’s harder to predict its eventual benefits.

Perhaps the most important current benefit of dynamic loading is that it makes
applications extensible. You can allow others to add to and customize a program
you’ve designed. All your program needs to do is provide a framework that
others can fill in, then at run time find the pieces that they’ve implemented and
load them dynamically.

For example, in the OPENSTEP for Mach environment, Interface Builder
dynamically loads custom palettes and inspectors, and the Workspace Manager
dynamically loads inspectors for particular file formats. Anyone can design their
own custom palettes and inspectors that these applications will load and
incorporate into themselves.

The main challenge that dynamic loading faces is getting a newly loaded part of
a program to work with parts already running, especially when the different
parts were written by different people. However, much of this problem
disappears in an object-oriented environment because code is organized into
logical modules with a clear division between implementation and interface.
When classes are dynamically loaded, nothing in the newly loaded code can
clash with the code already in place. Each class encapsulates its implementation
and has an independent name space.

In addition, dynamic typing and dynamic binding let classes designed by others
fit effortlessly into the program you’ve designed. Once a class is dynamically
loaded, it’s treated no differently than any other class. Your code can send
messages to their objects and theirs to yours. Neither of you has to know what
classes the other has implemented. You need only agree on a communications
protocol.

Loading and Linking

Although it’s the term commonly used,
“dynamic loading” could just as well be
called. “dynamic linking.” Programs are
linked when their various parts are joined so
that they can work together; they’re loaded
when they’re read into volatile memory at

launch time. Linking usually precedes
loading. Dynamic loading refers to the
process of separately loading new or
additional parts of a program and linking
them dynamically to the parts already
running.

33

Structuring Programs

Object-oriented programs have two kinds of structure. One can be seen in the
inheritance hierarchy of class definitions. The other is evident in the pattern of
message passing as the program runs. These messages reveal a network of
object connections.

The inheritance hierarchy explains how objects are related by type. For
example, in the program that models water use, it might turn out that Faucets
and WaterPipes are the same kind of object, except that Faucets can be
turned on and off and WaterPipes can have multiple connections to other
WaterPipes. This similarity would be captured in the program design if the
Faucet and WaterPipe classes inherit from a common antecedent.

The network of object connections explains how the program works. For
example, Appliance objects might send messages requesting water to Valves,
and Valves to WaterPipes. WaterPipes might communicate with the Building
object, and the Building object with all the Valves, Faucets, and WaterPipes,
but not directly with Appliances. To communicate with each other in this way,
objects must know about each other. An Appliance would need a connection
to a Valve, and a Valve to a WaterPipe, and so on. These connection define a
program structure.

Object-oriented programs are designed by laying out the network of objects
with their behaviors and patterns of interaction, and by arranging the hierarchy
of classes. There’s structure both in the program’s activity and in its definition.

Outlet Connections
Part of the task of designing an object-oriented program is to arrange the object
network. The network doesn’t have to be static; it can change dynamically as the
program runs. Relationships between objects can be improvised as needed, and
the cast of objects that play assigned roles can change from time to time. But
there has to be a script.

Some connections can be entirely transitory. A message might contain an
argument identifying an object, perhaps the sender of the message, that the
receiver can communicate with. As it responds to the message, the receiver can
send messages to that object, perhaps identifying itself or still another object
that that object can in turn communicate with. Such connections are fleeting;
they last only as long as the chain of messages.

But not all connections between objects can be handled on the fly. Some need
to be recorded in program data structures. There are various ways to do this. A

■

■

Chapter 1 Object-Oriented Programming

34

table might be kept of object connections, or there might be a service that
identifies objects by name. However, the simplest way is for each object to have
instance variables that keep track of the other objects it must communicate
with. These instance variables—termed outlets because they record the outlets
for messages—define the principal connections between objects in the program
network.

Although the names of outlet instance variables are arbitrary, they generally
reflect the roles that outlet objects play. The figure below illustrates an object
with four outlets—an “agent,” a “friend,” a “neighbor,” and a “boss.” The
objects that play these parts may change every now and then, but the roles
remain the same.

Some outlets are set when the object is first initialized and may never change.
Others might be set automatically as the consequence of other actions. Still
others can be set freely, using methods provided just for that purpose.

However they’re set, outlet instance variables reveal the structure of the
application. They link objects into a communicating network, much as the
components of a water system are linked by their physical connections or as
individuals are linked by their patterns of social relations.

Extrinsic and Intrinsic Connections
Outlet connections can capture many different kinds of relationships between
objects. Sometimes the connection is between objects that communicate more
or less as equal partners in an application, each with its own role to play and

agent
friend

neighbor
boss

35

neither dominating the other. For example, an Appliance object might have an
outlet instance variable to keep track of the Valve it’s connected to.

Sometimes one object should be seen as being part of another. For example, a
Faucet might use a Meter object to measure the amount of water being released.
The Meter would serve no other object and would act only under orders from
the Faucet. It would be an intrinsic part of the Faucet, in contrast to an
Appliance’s extrinsic connection to a Valve.

Similarly, an object that oversees other objects might keep a list of its charges. A
Building object, for example, might have a list of all the WaterPipes in the
program. The WaterPipes would be considered an intrinsic part of the Building
and belong to it. WaterPipes, on the other hand, would maintain extrinsic
connections to each other.

Intrinsic outlets behave differently than extrinsic ones. When an object is freed
or archived in a file on disk, the objects that its intrinsic outlets point to must be
freed or archived with it. For example, when a Faucet is freed, its Meter is
rendered useless and therefore should be freed as well. A Faucet that was
archived without its Meter would be of little use when it was unarchived again
(unless it could create a new Meter for itself).

Extrinsic outlets, on the other hand, capture the organization of the program at
a higher level. They record connections between relatively independent
program subcomponents. When an Appliance is freed, the Valve it was
connected to still is of use and remains in place. When an Appliance is
unarchived, it can be connected to another Valve and resume playing the same
sort of role it played before.

Activating the Object Network
The object network is set into motion by an external stimulus. If you’re writing
an interactive application with a user interface, it will respond to user actions on
the keyboard and mouse. A program that tries to factor very large numbers
might start when you pass it a target number on the command line. Other
programs might respond to data received over a phone line, information
obtained from a database, or information about the state of a mechanical process
the program monitors.

Object-oriented programs often are activated by a flow of events, reports of
external activity of some sort. Applications that display a user interface are
driven by events from the keyboard and mouse. Every touch of a key or click of
the mouse generates events that the application receives and responds to. An
object-oriented program structure (a network of objects that’s prepared to

Chapter 1 Object-Oriented Programming

36

respond to an external stimulus) is ideally suited for this kind of user-driven
application.

Aggregation and Decomposition
Another part of the design task is deciding the arrangement of classes—when to
add functionality to an existing class by defining a subclass and when to define
an independent class. The problem can be clarified by imagining what would
happen in the extreme case:

It’s possible to conceive of a program consisting of just one object. Since it’s
the only object, it can send messages only to itself. It therefore can’t take
advantage of polymorphism, or the modularity of a variety of classes, or a
program design conceived as a network of interconnected objects. The true
structure of the program would be hidden inside the class definition. Despite
being written in an object-oriented language, there would be very little that
was object-oriented about it.

On the other hand, it’s also possible to imagine a program that consists of
hundreds of different kinds of objects, each with very few methods and
limited functionality. Here, too, the structure of the program would be lost,
this time in a maze of object connections.

Obviously, it’s best to avoid either of these extremes, to keep objects large
enough to take on a substantial role in the program but small enough to keep
that role well-defined. The structure of the program should be easy to grasp in
the pattern of object connections.

Nevertheless, the question often arises of whether to add more functionality to
a class or to factor out the additional functionality and put it in an separate class
definition. For example, a Faucet needs to keep track of how much water is
being used over time. To do that, you could either implement the necessary
methods in the Faucet class, or you could devise a generic Meter object to do
the job, as suggested earlier. Each Faucet would have an outlet connecting it to
a Meter, and the Meter would not interact with any object but the Faucet.

The choice often depends on your design goals. If the Meter object could be
used in more than one situation, perhaps in another project entirely, it would
increase the reusability of your code to factor the metering task into a separate
class. If you have reason to make Faucet objects as self-contained as possible,
the metering functionality could be added to the Faucet class.

It’s generally better to try to for reusable code and avoid having large classes that
do so many things that they can’t be adapted to other situations. When objects

■

■

37

are designed as components, they become that much more reusable. What
works in one system or configuration might well work in another.

Dividing functionality between different classes doesn’t necessarily complicate
the programming interface. If the Faucet class keeps the Meter object private,
the Meter interface wouldn’t have to be published for users of the Faucet class;
the object would be as hidden as any other intrinsic Faucet instance variable.

Models and Frameworks
Objects combine state and behavior, and so resemble things in the real world.
Because they resemble real things, designing an object-oriented program is very
much like thinking about real things—what they do, how they work, and how
one thing is connected to another.

When you design an object-oriented program, you are, in effect, putting
together a computer simulation of how something works. Object networks look
and behave like models of real systems. An object-oriented program can be
thought of as a model, even if there’s no actual counterpart to it in the real world.

Each component of the model—each kind of object—is described in terms of
its behavior and responsibilities and its interactions with other components.
Because an object’s interface lies in its methods, not its data, you can begin the
design process by thinking about what a system component will do, not how it’s
represented in data. Once the behavior of an object is decided, the appropriate
data structure can be chosen, but this is a matter of implementation, not the
initial design.

For example, in the water-use program, you wouldn’t begin by deciding what
the Faucet data structure looked like, but what you wanted a Faucet to do—
make a connection to a WaterPipe, be turned on and off, adjust the rate of flow,
and so on. The design is therefore not bound from the outset by data choices.
You can decide on the behavior first, and implement the data afterwards. Your
choice of data structures can change over time without affecting the design.

Designing an object-oriented program doesn’t necessarily entail writing great
amounts of code. The reusability of class definitions means that the opportunity
is great for building a program largely out of classes devised by others. It might
even be possible to construct interesting programs entirely out of classes
someone else defined. As the suite of class definitions grows, you have more and
more reusable parts to choose from.

Reusable classes come from many sources. Development projects often yield
reusable class definitions, and some enterprising developers have begun
marketing them. Object-oriented programming environments typically come

Chapter 1 Object-Oriented Programming

38

with class libraries. There are well over a hundred classes in the OPENSTEP
libraries. Some of these classes offer basic services (hashing, data storage, remote
messaging). Others are more specific (user interface devices, video displays, a
sound editor).

Typically, a group of library classes work together to define a partial program
structure. These classes constitute a software framework (or kit) that can be
used to build a variety of different kinds of applications. When you use a
framework, you accept the program model it provides and adapt your design to
it. You use the framework by:

Initializing and arranging instances of framework classes,
Defining subclasses of framework classes, and
Defining new classes of your own to work with classes defined in the
framework.

In each of these ways, you not only adapt your program to the framework, but
you also adapt the generic framework structure to the specialized purposes of
your particular application.

The framework, in essence, sets up part of a object network for your program
and provides part of its class hierarchy. Your own code completes the program
model started by the framework.

Structuring the Programming Task

Object-oriented programming not only structures programs in a new way, it also
helps structure the programming task.

As software tries to do more and more, and programs become bigger and more
complicated, the problem of managing the task also grows. There are more
pieces to fit together and more people working together to build them. The
object-oriented approach offers ways of dealing with this complexity, not just in
design, but also in the organization of the work.

Collaboration
Complex software requires an extraordinary collaborative effort among people
who must be individually creative, yet still make what they do fit exactly with
what others are doing.

The sheer size of the effort and the number of people working on the same
project at the same time in the same place can get in the way of the group’s

■

■

■

39

ability to work cooperatively towards a common goal. In addition, collaboration
is often impeded by barriers of time, space, and organization.

Code must be maintained, improved, and used long after it’s written.
Programmers who collaborate on a project may not be working on it at the
same time, so may not be in a position to talk things over and keep each other
informed about details of the implementation.

Even if programmers work on the same project at the same time, they may
not be located in the same place. This also inhibits how closely they can work
together.

Programmers working in different groups with different priorities and
different schedules often must collaborate on projects. Communication
across organizational barriers isn’t always easy to achieve.

The answer to these difficulties must grow out of the way programs are designed
and written. It can’t be imposed from the outside in the form of hierarchical
management structures and strict levels of authority. These often get in the way
of people’s creativity, and become burdens in and of themselves. Rather,
collaboration must be built into the work itself.

That’s where object-oriented programming techniques can help. For example,
the reusability of object-oriented code means that programmers can collaborate
effectively even when they work on different projects at different times or are
in different organizations, just by sharing their code in libraries. This kind of
collaboration holds a great deal of promise, for it can conceivably lighten difficult
tasks and bring impossible projects into the realm of possibility.

Organizing Object-Oriented Projects
Object-oriented programming helps restructure the programming task in ways
that benefit collaboration. It helps eliminate the need to collaborate on low-level
implementation details, while providing structures that facilitate collaboration
at a higher level. Almost every feature of the object model, from the possibility
of large-scale design to the increased reusability of code, has consequences for
the way people work together.

Designing on a Large Scale
When programs are designed at a high level of abstraction, the division of labor
is more easily conceived. It can match the division of the program on logical
lines; the way a project is organized can grow out of its design.

With an object-oriented design, it’s easier to keep common goals in sight,
instead of losing them in the implementation, and easier for everyone to see

■

■

■

Chapter 1 Object-Oriented Programming

40

how the piece they’re working on fits into the whole. Their collaborative efforts
are therefore more likely to be on target.

Separating the Interface from the Implementation
The connections between the various components of an object-oriented
program are worked out early in the design process. They can be well-defined,
at least for the initial phase of development, before implementation begins.

During implementation, only this interface needs to be coordinated, and most
of that falls naturally out of the design. Since each class encapsulates its
implementation and has its own name space, there’s no need to coordinate
implementation details. Collaboration is simpler when there are fewer
coordination requirements.

Modularizing the Work
The modularity of object-oriented programming means that the logical
components of a large program can each be implemented separately. Different
people can work on different classes. Each implementation task is isolated from
the others.

This has benefits, not just for organizing the implementation, but for fixing
problems later. Since implementations are contained within class boundaries,
problems that come up are also likely to be isolated. It’s easier to track down
bugs when they’re located in a well-defined part of the program.

Separating responsibilities by class also means that each part can be worked on
by specialists. Classes can be updated periodically to optimize their
performance and make the best use of new technologies. These updates don’t
have to be coordinated with other parts of the program. As long as the interface
to an object doesn’t change, improvements to its implementation can be
scheduled at any time.

Keeping the Interface Simple
The polymorphism of object-oriented programs yields simpler programming
interfaces, since the same names and conventions can be reused in any number
of different classes. The result is less to learn, a greater shared understanding of
how the whole system works, and a simpler path to cooperation and
collaboration.

Making Decisions Dynamically
Because object-oriented programs make decisions dynamically at run time, less
information needs to be supplied at compile time (in source code) to make two

41

pieces of code work together. Consequently, there’s less to coordinate and less
to go wrong.

Inheriting Generic Code
Inheritance is a way of reusing code. If you can define your classes as
specializations of more generic classes, your programming task is simplified.
The design is simplified as well, since the inheritance hierarchy lays out the
relationships between the different levels of implementation and makes them
easier to understand.

Inheritance also increases the reusability and reliability of code. The code
placed in a superclass is tested by all its subclasses. The generic class you find
in a library will have been tested by other subclasses written by other developers
for other applications.

Reusing Tested Code
The more software you can borrow from others and incorporate in your own
programs, the less you have to do yourself. There’s more software to borrow in
an object-oriented programming environment because the code is more
reusable. Collaboration between programmers working in different places for
different organizations is enhanced, while the burden of each project is eased.

Classes and frameworks from an object-oriented library can make substantial
contributions to your program. When you program with the software
frameworks provided by NeXT, for example, you’re effectively collaborating
with the programmers at NeXT; you’re contracting a part of your program, often
a substantial part, to them. You can concentrate on what you do best and leave
other tasks to the library developer. Your projects can be prototyped faster,
completed faster, with less of a collaborative challenge at your own site.

The increased reusability of object-oriented code also increases its reliability. A
class taken from a library is likely to have found its way into a variety of different
applications and situations. The more the code has been used, the more likely
it is that problems will have been encountered and fixed. Bugs that would have
seemed strange and hard to find in your program might already have been
tracked down and eliminated.

Chapter 1 Object-Oriented Programming

42

The Objective-C LanguageChapter 2

45

This chapter describes the Objective-C language and discusses the principles of
object-oriented programming as they’re implemented in Objective-C. It covers
all the basic features that the language adds to standard C. The next chapter
continues the discussion by taking up more advanced and less commonly used
language features.

Objective-C syntax is a superset of standard C syntax, and its compiler works for
both C and Objective-C source code. The compiler recognizes Objective-C
source files by a “.m” extension, just as it recognizes files containing only
standard C syntax by a “.c” extension. The Objective-C language is fully
compatible with ANSI standard C.

Objective-C can also be used as an extension to C++. At first glance, this may
seem superfluous since C++ is itself an object-oriented extension of C. But C++
was designed primarily as “a better C,” and not necessarily as a full-featured
object-oriented language. It lacks some of the possibilities for object-oriented
design that dynamic typing and dynamic binding bring to Objective-C. At the
same time, it has useful language features not found in Objective-C. When you
use the two languages in combination, you can assign appropriate roles to the
features found in each and take advantage of what’s best in both.

Because object-oriented programs postpone many decisions from compile time
to run time, object-oriented languages depend on a run-time system for
executing the compiled code. The run-time system for the Objective-C
language is discussed in Chapter 4. This chapter and the next present the
language, but touch on important elements of the run-time system as they’re
important for understanding language features. NeXT has modified the GNU
C compiler to compile Objective-C, and NeXT provides its own run-time
system.

Objects

As the name implies, object-oriented programs are built around objects. An object
associates data with the particular operations that can use or affect that data. In
Objective-C, these operations are known as the object’s methods; the data they
affect are its instance variables. In essence, an object bundles a data structure
(instance variables) and a group of procedures (methods) into a self-contained
programming unit.

For example, if you are writing a drawing program that allows a user to create
images composed of lines, circles, rectangles, text, bit-mapped images, and so
forth, you might create classes for many of the basic shapes that a user will be

Chapter 2 The Objective-C Language

46

able to manipulate. A Rectangle object, for instance, might have instance
variables that identify the position of the rectangle within the drawing along
with its width and its height. Other instance variables could define the
rectangle’s color, whether or not it is to be filled, and a line pattern that should
be used to display the rectangle. A Rectangle would have methods to set the
rectangle’s position, size, color, fill status, and line pattern, along with a method
that causes the rectangle to display itself.

In Objective-C, an object’s instance variables are internal to the object; you get
access to an object’s state only through the object’s methods. For others to find
out something about an object, there has to be a method to supply the
information. For example, a Rectangle would have methods that reveal its size
and its position.

Moreover, an object sees only the methods that were designed for it; it can’t
mistakenly perform methods intended for other types of objects. Just as a C
function protects its local variables, hiding them from the rest of the program, an
object hides both its instance variables and its method implementations.

id
In Objective-C, objects are identified by a distinct data type, id. This type is
defined as a pointer to an object—in reality, a pointer to the object’s data (its
instance variables). Like a C function or an array, an object is identified by its
address. All objects, regardless of their instance variables or methods, are of type
id.

For the object-oriented constructs of Objective-C, such as method return
values, id replaces int as the default data type. (For strictly C constructs, such as
function return values, int remains the default type.)

The keyword nil is defined as a null object, an id with a value of 0. id, nil, and the
other basic types of Objective-C are defined in the header file objc.h, which is
located in the objc subdirectory of /NextDeveloper/Headers.

Dynamic Typing
The id type is completely nonrestrictive. By itself, it yields no information about
an object, except that it is an object.

But objects aren’t all the same. A Rectangle won’t have the same methods or
instance variables as an object that represents a bit-mapped image. At some

id anObject;

47

point, a program needs to find more specific information about the objects it
contains—what the object’s instance variables are, what methods it can perform,
and so on. Since the id type designator can’t supply this information to the
compiler, each object has to be able to supply it at run time.

This is possible because every object carries with it an isa instance variable that
identifies the object’s class—what kind of object it is. Every Rectangle object
would be able to tell the run-time system that it is a Rectangle. Every Circle can
say that it is a Circle. Objects with the same behavior (methods) and the same
kinds of data (instance variables) are members of the same class.

Objects are thus dynamically typed at run time. Whenever it needs to, the run-
time system can find the exact class that an object belongs to, just by asking the
object. Dynamic typing in Objective-C serves as the foundation for dynamic
binding, discussed later.

The isa pointer also enables objects to introspect about themselves as objects.
The compiler doesn’t discard much of the information it finds in source code; it
arranges most of it in data structures for the run-time system to use. Through isa,
objects can find this information and reveal it at run time. An object can, for
example, say whether it has a particular method in its repertoire and what the
name of its superclass is.

Object classes are discussed in more detail under “Classes” below.

It’s also possible to give the compiler information about the class of an object by
statically typing it in source code using the class name. Classes are particular
kinds of objects, and the class name can serve as a type name. See “Class Types”
later in this chapter and “Static Options” in Chapter 3.

Messages

To get an object to do something, you send it a message telling it to apply a
method. In Objective-C, message expressions are enclosed in square brackets:

The receiver is an object, and the message tells it what to do. In source code, the
message is simply the name of a method and any arguments that are passed to
it. When a message is sent, the run-time system selects the appropriate method
from the receiver’s repertoire and invokes it.

[receiver message]

Chapter 2 The Objective-C Language

48

For example, this message tells the myRect object to perform its display method,
which causes the rectangle to display itself:

Methods can also take arguments. The imaginary message below tells myRect to
set its location within the window to coordinates (30.0, 50.0):

Here the method name, setOrigin::, has two colons, one for each of its arguments.
The arguments are inserted after the colons, breaking the name apart. Colons
don’t have to be grouped at the end of a method name, as they are here. Usually
a keyword describing the argument precedes each colon. The setWidth:height:
method, for example, takes two arguments:

Methods that take a variable number of arguments are also possible, though
they’re somewhat rare. Extra arguments are separated by commas after the end
of the method name. (Unlike colons, the commas aren’t considered part of the
name.) In the following example, the imaginary makeGroup: method is passed one
required argument (group) and three that are optional:

Like standard C functions, methods can return values. The following example
sets the variable isFilled to YES if myRect is drawn as a solid rectangle, or NO if it’s
drawn in outline form only.

Note that a variable and a method can have the same name.

One message can be nested inside another. Here one rectangle is set to the color
of another:

[myRect display];

[myRect setOrigin:30.0 :50.0];

[myRect setWidth:10.0 height:15.0];

[receiver makeGroup:group, memberOne, memberTwo, memberThree];

BOOL isFilled;
isFilled = [myRect isFilled];

49

A message to nil also is valid, as long as the message returns an object; if it does,
a message sent to nil will return nil. If the message sent to nil returns anything
other than an object, the return value is undefined.

The Receiver’s Instance Variables
A method has automatic access to the receiving object’s instance variables. You
don’t need to pass them to the method as arguments. For example, the
primaryColor method illustrated above takes no arguments, yet it can find the
primary color for otherRect and return it. Every method assumes the receiver and
its instance variables, without having to declare them as arguments.

This convention simplifies Objective-C source code. It also supports the way
object-oriented programmers think about objects and messages. Messages are
sent to receivers much as letters are delivered to your home. Message arguments
bring information from the outside to the receiver; they don’t need to bring the
receiver to itself.

A method has automatic access only to the receiver’s instance variables. If it
requires information about a variable stored in another object, it must send a
message to the object asking it to reveal the contents of the variable. The
primaryColor and isFilled methods shown above are used for just this purpose.

See “Defining A Class” for more information on referring to instance variables.

Polymorphism
As the examples above illustrate, messages in Objective-C appear in the same
syntactic positions as function calls in standard C. But, because methods
“belong to” an object, messages behave differently than function calls.

In particular, an object has access only to the methods that were defined for it.
It can’t confuse them with methods defined for other kinds of objects, even if
another object has a method with the same name. This means that two objects
can respond differently to the same message. For example, each kind of object
sent a display message could display itself in a unique way. A Circle and a
Rectangle would respond differently to identical instructions to track the cursor.

This feature, referred to as polymorphism, plays a significant role in the design of
object-oriented programs. Together with dynamic binding, it permits you to
write code that might apply to any number of different kinds of objects, without
your having to choose at the time you write the code what kinds of objects they

[myRect setPrimaryColor:[otherRect primaryColor]];

Chapter 2 The Objective-C Language

50

might be. They might even be objects that will be developed later, by other
programmers working on other projects. If you write code that sends a display
message to an id variable, any object that has a display method is a potential
receiver.

Dynamic Binding
A crucial difference between function calls and messages is that a function and
its arguments are joined together in the compiled code, but a message and a
receiving object aren’t united until the program is running and the message is
sent. Therefore, the exact method that will be invoked to respond to a message
can only be determined at run time, not when the code is compiled.

The precise method that a message invokes depends on the receiver. Different
receivers may have different method implementations for the same method
name (polymorphism). For the compiler to find the right method
implementation for a message, it would have to know what kind of object the
receiver is—what class it belongs to. This is information the receiver is able to
reveal at run time when it receives a message (dynamic typing), but it’s not
available from the type declarations found in source code.

The selection of a method implementation happens at run time. When a
message is sent, a run-time messaging routine looks at the receiver and at the
method named in the message. It locates the receiver’s implementation of a
method matching the name, “calls” the method, and passes it a pointer to the
receiver’s instance variables. (For more on this routine, see “How Messaging
Works” below.)

The method name in a message thus serves to “select” a method
implementation. For this reason, method names in messages are often referred
to as selectors.

This dynamic binding of methods to messages works hand-in-hand with
polymorphism to give object-oriented programming much of its flexibility and
power. Since each object can have its own version of a method, a program can
achieve a variety of results, not by varying the message itself, but by varying just
the object that receives the message. This can be done as the program runs;
receivers can be decided “on the fly” and can be made dependent on external
factors such as user actions.

When executing code based upon the Application Kit, for example, users
determine which objects receive messages from menu commands like Cut,
Copy, and Paste. The message goes to whatever object controls the current
selection. An object that displays editable text would react to a copy message
differently than an object that displays scanned images. An object that

51

represents a set of shapes would respond differently than a Rectangle. Since
messages don’t select methods (methods aren’t bound to messages) until run
time, these differences are isolated in the methods that respond to the message.
The code that sends the message doesn’t have to be concerned with them; it
doesn’t even have to enumerate the possibilities. Each application can invent its
own objects that respond in their own way to copy messages.

Objective-C takes dynamic binding one step further and allows even the
message that’s sent (the method selector) to be a variable that’s determined at
run time. This is discussed in the section on “How Messaging Works.”

Classes

An object-oriented program is typically built from a variety of objects. A program
based on the OpenStep software frameworks might use NSMatrix objects,
NSWindow objects, NSDictionary objects, NSFont objects, NSText objects,
and many others. Programs often use more than one object of the same kind or
class—several NSArrays or NSWindows, for example.

In Objective-C, you define objects by defining their class. The class definition
is a prototype for a kind of object; it declares the instance variables that become
part of every member of the class, and it defines a set of methods that all objects
in the class can use.

The compiler creates just one accessible object for each class, a class object that
knows how to build new objects belonging to the class. (For this reason it’s
traditionally called a “factory object.”) The class object is the compiled version
of the class; the objects it builds are instances of the class. The objects that will
do the main work of your program are instances created by the class object at run
time.

All instances of a class have access to the same set of methods, and they all have
a set of instance variables cut from the same mold. Each object gets its own
instance variables, but the methods are shared.

By convention, class names begin with an uppercase letter (such as
“Rectangle”); the names of instances typically begin with a lowercase letter
(such as “myRect”).

Inheritance
Class definitions are additive; each new class that you define is based on another
class through which it inherits methods and instance variables. The new class

Chapter 2 The Objective-C Language

52

simply adds to or modifies what it inherits. It doesn’t need to duplicate inherited
code.

Inheritance links all classes together in a hierarchical tree with a single class at
its root. When writing code that is based upon the Foundation framework, that
root class is typically NSObject. Every class (except a root class) has a superclass
one step nearer the root, and any class (including a root class) can be the
superclass for any number of subclasses one step farther from the root. The figure
below illustrates the hierarchy for a few of the classes used in the drawing
program.

This figure shows that the Square class is a subclass of the Rectangle class, the
Rectangle class is a subclass of Shape, Shape is a subclass of Graphic, and
Graphic is a subclass of NSObject. Inheritance is cumulative. So a Square object
has the methods and instance variables defined for Rectangle, Shape, Graphic,
and NSObject, as well as those defined specifically for Square. This is simply to
say that a Square object isn’t only a Square, it’s also a Rectangle, a Shape, a
Graphic, and an NSObject.

Every class but NSObject can thus be seen as a specialization or an adaptation
of another class. Each successive subclass further modifies the cumulative total
of what’s inherited. The Square class defines only the minimum needed to turn
a Rectangle into a Square.

When you define a class, you link it to the hierarchy by declaring its superclass;
every class you create must be the subclass of another class (unless you define a
new root class). Plenty of potential superclasses are available. OPENSTEP
includes the NSObject class and several software frameworks containing
definitions for more than 125 additional classes. Some are classes that you can
use “off the shelf”—incorporate into your program as is. Others you might want
to adapt to your own needs by defining a subclass.

Image Text

NSObject

Graphic

Shape

Line CircleRectangle

Square

53

Some framework classes define almost everything you need, but leave some
specifics to be implemented in a subclass. You can thus create very sophisticated
objects by writing only a small amount of code, and reusing work done by the
programmers of the framework.

The NSObject Class
NSObject, being a root class, doesn’t have a superclass. In OpenStep, it’s in the
inheritance path for every other class. That’s because it defines the basic
framework for Objective-C objects and object interactions. It imparts to the
classes and instances that inherit from it the ability to behave as objects and
cooperate with the run-time system.

A class that doesn’t need to inherit any special behavior from another class is
nevertheless made a subclass of the NSObject class. Instances of the class must
at least have the ability to behave like Objective-C objects at run time.
Inheriting this ability from the NSObject class is much simpler and much more
reliable than reinventing it in a new class definition.

Note: Implementing a new root class is a delicate task and one with many hidden
hazards. The class must duplicate much of what the NSObject class does, such
as allocate instances, connect them to their class, and identify them to the run-
time system. It’s strongly recommended that you use the NSObject class
provided with OpenStep as the root class. This manual doesn’t explain all the
ins and outs that you would need to know to replace it.

Inheriting Instance Variables
When a class object creates a new instance, the new object contains not only the
instance variables that were defined for its class, but also the instance variables
defined for its superclass, and for its superclass’s superclass, all the way back to
the root class. Thus, the isa instance variable defined in the NSObject class
becomes part of every object. isa connects each object to its class.

The figure below shows some of the instance variables that could be defined for
a particular implementation of Rectangle, and where they might come from.
Note that the variables that make the object a Rectangle are added to the ones
that make it a Shape, and the ones that make it a Shape are added to the ones
that make it a Graphic, and so on.

Chapter 2 The Objective-C Language

54

A class doesn’t have to declare instance variables. It can simply define new
methods and rely on the instance variables it inherits, if it needs any instance
variables at all. For instance, Square might not declare any new instance
variables of its own.

Inheriting Methods
An object has access not only to the methods that were defined for its class, but
also to methods defined for its superclass, and for its superclass’s superclass, all
the way back to the root of the hierarchy. For instance, a Square object can use
methods defined in the Rectangle, Shape, Graphic, and NSObject classes as
well as methods defined in its own class.

Any new class you define in your program can therefore make use of the code
written for all the classes above it in the hierarchy. This type of inheritance is a
major benefit of object-oriented programming. When you use one of the object-
oriented frameworks provided by OPENSTEP, your programs can take
advantage of all the basic functionality coded into the framework classes. You
have to add only the code that customizes the framework to your application.

Class objects also inherit from the classes above them in the hierarchy. But
because they don’t have instance variables (only instances do), they inherit only
methods.

Overriding One Method With Another
There’s one useful exception to inheritance: When you define a new class, you
can implement a new method with the same name as one defined in a class
farther up the hierarchy. The new method overrides the original; instances of
the new class will perform it rather than the original, and subclasses of the new
class will inherit it rather than the original.

For example, Graphic defines a display method that Rectangle overrides by
defining its own version of display. The Graphic method is available to all kinds

Class
NSPoint
NSColor
Pattern
. . .
float
float
BOOL
NSColor
. . .

declared in Shape

declared in Rectangle

declared in NSObject
declared in Graphic

isa;
origin;
*primaryColor;
linePattern;

width;
height;
filled;
*fillColor;

55

of objects that inherit from the Graphic class—but not to Rectangle objects,
which instead perform the Rectangle version of display.

Although overriding a method blocks the original version from being inherited,
other methods defined in the new class can skip over the redefined method and
find the original (see “Messages to self and super,” below, to learn how).

A redefined method can also incorporate the very method it overrides. When it
does, the new method serves only to refine or modify the method it overrides,
rather than replace it outright. When several classes in the hierarchy define the
same method, but each new version incorporates the version it overrides, the
implementation of the method is effectively spread over all the classes.

Although a subclass can override inherited methods, it can’t override inherited
instance variables. Since an object has memory allocated for every instance
variable it inherits, you can’t override an inherited variable by declaring a new
one with the same name. If you try, the compiler will complain.

Abstract Classes
Some classes are designed only so that other classes can inherit from them.
These abstract classes group methods and instance variables that will be used by
a number of different subclasses into a common definition. The abstract class is
incomplete by itself, but contains useful code that reduces the implementation
burden of its subclasses.

The NSObject class is the prime example of an abstract class. Although
programs often define NSObject subclasses and use instances belonging to the
subclasses, they never use instances belonging directly to the NSObject class.
An NSObject instance wouldn’t be good for anything; it would be a generic
object with the ability to do nothing in particular.

Abstract classes often contain code that helps define the structure of an
application. When you create subclasses of these classes, instances of your new
classes fit effortlessly into the application structure and work automatically with
other objects.

(Because abstract classes must have subclasses, they’re sometimes also called
abstract superclasses.)

Class Types
A class definition is a specification for a kind of object. The class, in effect,
defines a data type. The type is based not just on the data structure the class
defines (instance variables), but also on the behavior included in the definition
(methods).

Chapter 2 The Objective-C Language

56

A class name can appear in source code wherever a type specifier is permitted in
C—for example, as an argument to the sizeof operator:

Static Typing
You can use a class name in place of id to designate an object’s type:

Because this way of declaring an object type gives the compiler information
about what kind of object it is, it’s known as static typing. Just as id is defined as a
pointer to an object, objects are statically typed as pointers to a class. Objects are
always typed by a pointer. Static typing makes the pointer explicit; id hides it.

Static typing permits the compiler to do some type checking—for example, to
warn if an object receives a message that it appears not to be able to respond to—
and to loosen some restrictions that apply to objects generically typed id. In
addition, it can make your intentions clearer to others who read your source
code. However, it doesn’t defeat dynamic binding or alter the dynamic
determination of a receiver’s class at run time.

An object can be statically typed to its own class or to any class that it inherits
from. For example, since inheritance makes a Rectangle a kind of Graphic, a
Rectangle instance could be statically typed to the Graphic class:

This is possible because a Rectangle is a Graphic. It’s more than a Graphic since
it also has the instance variables and method capabilities of a Shape and a
Rectangle, but it’s a Graphic nonetheless. For purposes of type checking, the
compiler will consider myRect to be an Graphic, but at run time it will be treated
as a Rectangle.

See “Static Options” in the next chapter for more on static typing and its
benefits.

int i = sizeof(Rectangle);

Rectangle *myRect;

Graphic *myRect;

57

Type Introspection
Instances can reveal their types at run time. The isMemberOfClass: method,
defined in the NSObject class, checks whether the receiver is an instance of a
particular class:

The isKindOfClass: method, also defined in the NSObject class, checks more
generally whether the receiver inherits from or is a member of a particular class
(whether it has the class in its inheritance path):

The set of classes for which isKindOfClass: returns YES is the same set to which
the receiver can be statically typed.

Introspection isn’t limited to type information. Later sections of this chapter
discuss methods that return the class object, report whether an object can
respond to a message, and reveal other information.

See the NSObject class specification in the Foundation Framework Reference for
more on isKindOfClass:, isMemberOfClass:, and related methods.

Class Objects
A class definition contains various kinds of information, much of it about
instances of the class:

The name of the class and its superclass
A template describing a set of instance variables
The declaration of method names and their return and argument types
The method implementations

This information is compiled and recorded in data structures made available to
the run-time system. The compiler creates just one object, a class object, to
represent the class. The class object has access to all the information about the
class, which means mainly information about what instances of the class are like.
It’s able to produce new instances according to the plan put forward in the class
definition.

if ([anObject isMemberOfClass:someClass])

 . . .

if ([anObject isKindOfClass:someClass])

 . . .

■

■

■

■

Chapter 2 The Objective-C Language

58

Although a class object keeps the prototype of a class instance, it’s not an
instance itself. It has no instance variables of its own and it can’t perform
methods intended for instances of the class. However, a class definition can
include methods intended specifically for the class object—class methods as
opposed to instance methods. A class object inherits class methods from the classes
above it in the hierarchy, just as instances inherit instance methods.

In source code, the class object is represented by the class name. In the
following example, the Rectangle class returns the class version number using a
method inherited from the NSObject class:

However, the class name stands for the class object only as the receiver in a
message expression. Elsewhere, you need to ask an instance or the class to
return the class id. Both respond to a class message:

As these examples show, class objects can, like all other objects, be typed id. But
class objects can also be more specifically typed to the Class data type:

All class objects are of type Class. Using this type name for a class is equivalent
to using the class name to statically type an instance.

Class objects are thus full-fledged objects that can be dynamically typed,
receive messages, and inherit methods from other classes. They’re special only
in that they’re created by the compiler, lack data structures (instance variables)
of their own other than those built from the class definition, and are the agents
for producing instances at run time.

Note: The compiler also builds a “meta-class object” for each class. It describes
the class object just as the class object describes instances of the class. But while
you can send messages to instances and to the class object, the meta-class object
is used only internally by the run-time system.

int versionNumber = [Rectangle version];

id aClass = [anObject class];

id rectClass = [Rectangle class];

Class aClass = [anObject class];

Class rectClass = [Rectangle class];

59

Creating Instances
A principal function of a class object is to create new instances. This code tells
the Rectangle class to create a new Rectangle instance and assign it to the myRect
variable:

The alloc method dynamically allocates memory for the new object’s instance
variables and initializes them all to 0—all, that is, except the isa variable that
connects the new instance to its class. For an object to be useful, it generally
needs to be more completely initialized. That’s the function of an init method.
Initialization typically follows immediately after allocation:

This line of code, or one like it, would be necessary before myRect could receive
any of the messages that were illustrated in previous examples in this chapter.
The alloc method returns a new instance and that instance performs an init
method to set its initial state. Every class object has at least one method (like
alloc) that enables it to produce new objects, and every instance has at least one
method (like init) that prepares it for use. Initialization methods often take
arguments to allow particular values to be passed and have keywords to label the
arguments (initWithPosition:size:, for example, is a method that might initialize a
new Rectangle instance), but they all begin with “init”.

Customization With Class Objects
It’s not just a whim of the Objective-C language that classes are treated as
objects. It’s a choice that has intended, and sometimes surprising, benefits for
design. It’s possible, for example, to customize an object with a class, where the
class belongs to an open-ended set. In the Application Kit, for example, an
NSMatrix object can be customized with a particular kind of NSCell.

An NSMatrix can take responsibility for creating the individual objects that
represent its cells. It can do this when the NSMatrix is first initialized and later
when new cells are needed. The visible matrix that an NSMatrix object draws
on-screen can grow and shrink at run time, perhaps in response to user actions.
When it grows, the NSMatrix needs to be able to produce new objects to fill the
new slots that are added.

id myRect;
myRect = [Rectangle alloc];

myRect = [[Rectangle alloc] init];

Chapter 2 The Objective-C Language

60

But what kind of objects should they be? Each NSMatrix displays just one kind
of NSCell, but there are many different kinds. The inheritance hierarchy in the
following figure shows some of those provided by the Application Kit. All inherit
from the generic NSCell class:

When an NSMatrix creates new NSCell objects, should they be NSButtonCells
to display a bank of buttons or switches, NSTextFieldCells to display fields
where the user can enter and edit text, or some other kind of NSCell? The
NSMatrix must allow for any kind of NSCell, even types that haven’t been
invented yet.

One solution to this problem would be to define the NSMatrix class as an
abstract class and require everyone who uses it to declare a subclass and
implement the methods that produce new cells. Because they would be
implementing the methods, users of the class could be sure that the objects they
created were of the right type.

But this requires others to do work that ought to be done in the NSMatrix class,
and it unnecessarily proliferates the number of classes. Since an application
might need more than one kind of NSMatrix, each with a different kind of
NSCell, it could become cluttered with NSMatrix subclasses. Every time you
invented a new kind of NSCell, you’d also have to define a new kind of
NSMatrix. Moreover, programmers on different projects would be writing
virtually identical code to do the same job, all to make up for NSMatrix’s failure
to do it.

A better solution, the solution the NSMatrix class actually adopts, is to allow
NSMatrix instances to be initialized with a kind of NSCell—with a class object.
It defines a setCellClass: method that passes the class object for the kind of
NSCell object an NSMatrix should use to fill empty slots:

NSObject

NSCell

NSActionCell

NSTextFieldCell NSSliderCellNSButtonCell NSFormCell

NSMenuCell

NSBrowserCell

[myMatrix setCellClass:[NSButtonCell class]];

61

The NSMatrix uses the class object to produce new cells when it’s first
initialized and whenever it’s resized to contain more cells. This kind of
customization would be impossible if classes weren’t objects that could be
passed in messages and assigned to variables.

Variables and Class Objects
When you define a new class of objects, you can decide what instance variables
they should have. Every instance of the class will have its own copy of all the
variables you declare; each object controls its own data.

However, you can’t prescribe variables for the class object; there are no “class
variable” counterparts to instance variables. Only internal data structures,
initialized from the class definition, are provided for the class. The class object
also has no access to the instance variables of any instances; it can’t initialize,
read, or alter them.

Therefore, for all the instances of a class to share data, an external variable of
some sort is required. Some classes declare static variables and provide class
methods to manage them. (Declaring a variable static in the same file as the class
definition limits its scope to just the class—and to just the part of the class that’s
implemented in the file. Unlike instance variables, static variables can’t be
inherited by subclasses.)

Static variables help give the class object more functionality than just that of a
“factory” producing instances; it can approach being a complete and versatile
object in its own right. A class object can be used to coordinate the instances it
creates, dispense instances from lists of objects already created, or manage other
processes essential to the application. In the limiting case, when you need only
one object of a particular class, you can put all the object’s state into static
variables and use only class methods. This saves the step of allocating and
initializing an instance.

Note: It would also be possible to use external variables that weren’t declared
static, but the limited scope of static variables better serves the purpose of
encapsulating data into separate objects.

Initializing a Class Object
If a class object is to be used for anything besides allocating instances, it may
need to be initialized just as an instance is. Although programs don’t allocate
class objects, Objective-C does provide a way for programs to initialize them.

The run-time system sends an initialize message to every class object before the
class receives any other messages. This gives the class a chance to set up its run-
time environment before it’s used. If no initialization is required, you don’t need

Chapter 2 The Objective-C Language

62

to write an initialize method to respond to the message; the NSObject class
defines an empty version that your class inherits.

If a class makes use of static or global variables, the initialize method is a good
place to set their initial values. For example, if a class maintains an array of
instances, the initialize method could set up the array and even allocate one or
two default instances to have them ready.

Note that since initialize is inherited, it may be called multiple times on behalf of
subclasses.

Methods of the Root Class
All objects, classes and instances alike, need an interface to the run-time system.
Both class objects and instances should be able to introspect about their abilities
and to report their place in the inheritance hierarchy. It’s the province of the
NSObject class to provide this interface.

So that NSObject’s methods won’t all have to be implemented twice—once to
provide a run-time interface for instances and again to duplicate that interface
for class objects—class objects are given special dispensation to perform
instance methods defined in the root class. When a class object receives a
message that it can’t respond to with a class method, the run-time system will
see if there’s a root instance method that can respond. The only instance
methods that a class object can perform are those defined in the root class, and
only if there’s no class method that can do the job.

For more on this peculiar ability of class objects to perform root instance
methods, see the NSObject class specification in the Foundation Framework
Reference.

Class Names in Source Code
In source code, class names can be used in only two very different contexts.
These contexts reflect the dual role of a class as a data type and as an object:

The class name can be used as a type name for a kind of object. For example:

Here anObject is statically typed to be a Rectangle. The compiler will expect
it to have the data structure of a Rectangle instance and the instance
methods defined and inherited by the Rectangle class. Static typing enables

■

Rectangle *anObject;
anObject = [[Rectangle alloc] init];

63

the compiler to do better type checking and makes source code more self-
documenting. See “Static Options” in the next chapter for details.

Only instances can be statically typed; class objects can’t be, since they aren’t
members of a class, but rather belong to the Class data type.

As the receiver in a message expression, the class name refers to the class
object. This usage was illustrated in several of the examples above. The class
name can stand for the class object only as a message receiver. In any other
context, you must ask the class object to reveal its id (by sending it a class
message). The example below passes the Rectangle class as an argument in
an isKindOf: message.

It would have been illegal to simply use the name “Rectangle” as the
argument. The class name can only be a receiver.

If you don’t know the class name at compile time but have it as a string at
run time, objc_lookUpClass() will return the class object:

This function returns nil if the string it’s passed is not a valid class name.

Class names compete in the same name space as variables and functions. A class
and a global variable can’t have the same name. Class names are about the only
names with global visibility in Objective-C.

Defining A Class

Much of object-oriented programming consists of writing the code for new
objects—defining new classes. In Objective-C, classes are defined in two parts:

An interface that declares the methods and instance variables of the class and
names its superclass

■

if ([anObject isKindOf:[Rectangle class]])
 . . .

char *aBuffer;

 . . .

if ([anObject isKindOf:objc_lookUpClass(aBuffer)])
 . . .

■

Chapter 2 The Objective-C Language

64

An implementation that actually defines the class (contains the code that
implements its methods)

Although the compiler doesn’t require it, the interface and implementation are
usually separated into two different files. The interface file must be made
available to anyone who uses the class. You generally wouldn’t want to distribute
the implementation file that widely; users don’t need source code for the
implementation.

A single file can declare or implement more than one class. Nevertheless, it’s
customary to have a separate interface file for each class, if not also a separate
implementation file. Keeping class interfaces separate better reflects their status
as independent entities.

Interface and implementation files typically are named after the class. The
implementation file has a “.m” suffix, indicating that it contains Objective-C
source code. The interface file can be assigned any other extension. Because it’s
included in other source files, the interface file usually has the “.h” suffix typical
of header files. For example, the Rectangle class would be declared in Rectangle.h
and defined in Rectangle.m.

Separating an object’s interface from its implementation fits well with the
design of object-oriented programs. An object is a self-contained entity that can
be viewed from the outside almost as a “black box.” Once you’ve determined
how an object will interact with other elements in your program—that is, once
you’ve declared its interface—you can freely alter its implementation without
affecting any other part of the application.

The Interface
The declaration of a class interface begins with the compiler directive @interface
and ends with the directive @end. (All Objective-C directives to the compiler
begin with “@”.)

The first line of the declaration presents the new class name and links it to its
superclass. The superclass defines the position of the new class in the
inheritance hierarchy, as discussed under “Inheritance” above. If the colon and

■

@interface ClassName : ItsSuperclass
{

instance variable declarations
}
method declarations
@end

65

superclass name are omitted, the new class is declared as a root class, a rival to
the NSObject class.

Following the class declaration, braces enclose declarations of instance variables,
the data structures that will be part of each instance of the class. Here’s a partial
list of instance variables that might be declared in the Rectangle class:

Methods for the class are declared next, after the braces enclosing instance
variables and before the end of the class declaration. The names of methods that
can be used by class objects, class methods, are preceded by a plus sign:

The methods that instances of a class can use, instance methods, are marked with
a minus sign:

Although it’s not a common practice, you can define a class method and an
instance method with the same name. A method can also have the same name
as an instance variable. This is more common, especially if the method returns
the value in the variable. For example, Circle has a radius method that could
match a radius instance variable.

Method return types are declared using the standard C syntax for casting one
type to another:

Argument types are declared in the same way:

 float width

 float height;

 BOOL filled;

 NSColor *fillColor;

+ alloc;

- (void)display;

- (float)radius;

- (void)setRadius:(float)aRadius;

Chapter 2 The Objective-C Language

66

If a return or argument type isn’t explicitly declared, it’s assumed to be the
default type for methods and messages—an id. The alloc method illustrated
above returns id.

When there’s more than one argument, they’re declared within the method
name after the colons. Arguments break the name apart in the declaration, just
as in a message. For example:

Methods that take a variable number of arguments declare them using a comma
and an ellipsis, just as a function would:

Importing the Interface
The interface file must be included in any source module that depends on the
class interface—that includes any module that creates an instance of the class,
sends a message to invoke a method declared for the class, or mentions an
instance variable declared in the class. The interface is usually included with the
#import directive:

This directive is identical to #include, except that it makes sure that the same file
is never included more than once. It’s therefore preferred and is used in place of
#include in code examples throughout NeXT documentation.

To reflect the fact that a class definition builds on the definitions of inherited
classes, an interface file begins by importing the interface for its superclass:

- (void)setWidth:(float)width height:(float)height;

- makeGroup:group, ...;

#import "Rectangle.h"

#import " ItsSuperclass .h"

@interface ClassName : ItsSuperclass
{

instance variable declarations
}
method declarations
@end

67

This convention means that every interface file includes, indirectly, the
interface files for all inherited classes. When a source module imports a class
interface, it gets interfaces for the entire inheritance hierarchy that the class is
built upon.

Note that if there is a “precomp”—a precompiled header—that supports the
superclass, you may prefer to import the precomp instead.

Referring to Other Classes
An interface file declares a class and, by importing its superclass, implicitly
contains declarations for all inherited classes, from NSObject on down through
its superclass. If the interface mentions classes not in this hierarchy, it must
import them explicitly or declare them with the @class directive:

This directive simply informs the compiler that “Rectangle” and “Circle” are
class names. It doesn’t import their interface files.

An interface file mentions class names when it statically types instance variables,
return values, and arguments. For example, this declaration

mentions the NSColor class.

Since declarations like this simply use the class name as a type and don’t depend
on any details of the class interface (its methods and instance variables), the
@class directive gives the compiler sufficient forewarning of what to expect.
However, where the interface to a class is actually used (instances created,
messages sent), the class interface must be imported. Typically, an interface file
uses @class to declare classes, and the corresponding implementation file
imports their interfaces (since it will need to create instances of those classes or
send them messages).

The @class directive minimizes the amount of code seen by the compiler and
linker, and is therefore the simplest way to give a forward declaration of a class
name. Being simple, it avoids potential problems that may come with importing
files that import still other files. For example, if one class declares a statically
typed instance variable of another class, and their two interface files import each
other, neither class may compile correctly.

@class Rectangle, Circle;

- (void)setPrimaryColor:(NSColor *)aColor;

Chapter 2 The Objective-C Language

68

The Role of the Interface
The purpose of the interface file is to declare the new class to other source
modules (and to other programmers). It contains all the information they need
to work with the class (programmers might also appreciate a little
documentation).

The interface file tells users how the class is connected into the inheritance
hierarchy and what other classes—inherited or simply referred to somewhere
in the class—are needed.

The interface file also lets the compiler know what instance variables an
object contains and programmers know what variables their subclasses will
inherit. Although instance variables are most naturally viewed as a matter of
the implementation of a class rather than its interface, they must nevertheless
be declared in the interface file. This is because the compiler must be aware
of the structure of an object where it’s used, not just where it’s defined. As a
programmer, however, you can generally ignore the instance variables of the
classes you use, except when defining a subclass.

Finally, through its list of method declarations, the interface file lets other
modules know what messages can be sent to the class object and instances of
the class. Every method that can be used outside the class definition is
declared in the interface file; methods that are internal to the class
implementation can be omitted.

The Implementation
The definition of a class is structured very much like its declaration. It begins
with an @implementation directive and ends with @end:

However, every implementation file must import its own interface. For
example, Rectangle.m imports Rectangle.h. Because the implementation doesn’t
need to repeat any of the declarations it imports, it can safely omit:

The name of the superclass
The declarations of instance variables

■

■

■

@implementation ClassName : ItsSuperclass
{

instance variable declarations
}
method definitions
@end

■

■

69

This simplifies the implementation and makes it mainly devoted to method
definitions:

Methods for a class are defined, like C functions, within a pair of braces. Before
the braces, they’re declared in the same manner as in the interface file, but
without the semicolon. For example:

Methods that take a variable number of arguments handle them just as a
function would:

Referring to Instance Variables
By default, the definition of an instance method has all the instance variables of
the object within its scope. It can refer to them simply by name. Although the

#import " ClassName .h"

@implementation ClassName
method definitions
@end

+ alloc
{
 . . .
}

- (BOOL)isfilled

{

 . . .

}

- (void)setFilled:(BOOL)flag
{
 . . .
}

#import <stdarg.h>

 . . .

- getGroup:group, ...
{
 va_list ap;
 va_start(ap, group);
 . . .
}

Chapter 2 The Objective-C Language

70

compiler creates the equivalent of C structures to store instance variables, the
exact nature of the structure is hidden. You don’t need either of the structure
operators (‘.’ or ‘->’) to refer to an object’s data. For example, the following
method definition refers to the receiver’s tag instance variable:

Neither the receiving object nor its filled instance variable is declared as an
argument to this method, yet the instance variable falls within its scope. This
simplification of method syntax is a significant shorthand in the writing of
Objective-C code.

When the instance variable belongs to an object that’s not the receiver, the
object’s type must be made explicit to the compiler through static typing. In
referring to the instance variable of a statically typed object, the structure
pointer operator (‘->’) is used.

Suppose, for example, that the Sibling class declares a statically typed object,
twin, as an instance variable:

As long as the instance variables of the statically typed object are within the
scope of the class (as they are here because twin is typed to the same class), a
Sibling method can set them directly:

- (void)setFilled:(BOOL)flag
{
 filled = flag;
 . . .
}

@interface Sibling : NSObject
{
 Sibling *twin;
 int gender;
 struct features *appearance;
}

71

The Scope of Instance Variables
Although they’re declared in the class interface, instance variables are more a
matter of the way a class is implemented than of the way it’s used. An object’s
interface lies in its methods, not in its internal data structures.

Often there’s a one-to-one correspondence between a method and an instance
variable, as in the following example:

But this need not be the case. Some methods might return information not
stored in instance variables, and some instance variables might store information
that an object is unwilling to reveal.

As a class is revised from time to time, the choice of instance variables may
change, even though the methods it declares remain the same. As long as
messages are the vehicle for interacting with instances of the class, these
changes won’t really affect its interface.

To enforce the ability of an object to hide its data, the compiler limits the scope
of instance variables—that is, limits their visibility within the program. But to
provide flexibility, it also lets you explicitly set the scope at three different
levels. Each level is marked by a compiler directive:

- makeIdenticalTwin
{
 if (!twin) {
 twin = [[Sibling alloc] init];
 twin->gender = gender;
 twin->appearance = appearance;
 }
 return twin;
}

- (BOOL)isFilled
{
 return filled;
}

Chapter 2 The Objective-C Language

72

Directive Meaning

@private The instance variable is accessible only within the class that declares
it.

@protected The instance variable is accessible within the class that declares it
and within classes that inherit it.

@public The instance variable is accessible everywhere.

This is illustrated in the following figure.

A directive applies to all the instance variables listed after it, up to the next
directive or the end of the list. In the following example, the age and evaluation
instance variables are private, name, job, and wage are protected, and boss is
public.

Unrelated code

The class that
declares the

instance variable

A class that
inherits the

instance variable

@private

@protected

@public

73

By default, all unmarked instance variables (like name above) are @protected.

All instance variables that a class declares, no matter how they’re marked, are
within the scope of the class definition. For example, a class that declares a job
instance variable, such as the Worker class shown above, can refer to it in a
method definition:

Obviously, if a class couldn’t access its own instance variables, the instance
variables would be of no use whatsoever.

Normally, a class also has access to the instance variables it inherits. The ability
to refer to an instance variable is usually inherited along with the variable. It
makes sense for classes to have their entire data structures within their scope,
especially if you think of a class definition as merely an elaboration of the classes
it inherits from. The promoteTo: method illustrated above could just as well have
been defined in any class that inherits the job instance variable from the Worker
class.

However, there are reasons why you might want to restrict inheriting classes
from accessing an instance variable:

Once a subclass accesses an inherited instance variable, the class that declares
the variable is tied to that part of its implementation. In later versions, it can’t
eliminate the variable or alter the role it plays without inadvertently breaking
the subclass.

@interface Worker : NSObject
{
 char *name;
@private
 int age;
 char *evaluation;
@protected
 id job;
 float wage;
@public
 id boss;
}

- promoteTo:newPosition
{
 id old = job;
 job = newPosition;
 return old;
}

■

Chapter 2 The Objective-C Language

74

Moreover, if a subclass accesses an inherited instance variable and alters its
value, it may inadvertently introduce bugs in the class that declares the
variable, especially if the variable is involved in class-internal dependencies.

To limit an instance variable’s scope to just the class that declares it, you must
mark it @private.

At the other extreme, marking a variable @public makes it generally available,
even outside of class definitions that inherit or declare the variable. Normally, to
get information stored in an instance variable, other objects must send a
message requesting it. However, a public instance variable can be accessed
anywhere as if it were a field in a C structure.

Note that the object must be statically typed.

Marking instance variables @public defeats the ability of an object to hide its
data. It runs counter to a fundamental principle of object-oriented
programming—the encapsulation of data within objects where it’s protected
from view and inadvertent error. Public instance variables should therefore be
avoided except in extraordinary cases.

How Messaging Works

In Objective-C, messages aren’t bound to method implementations until run
time. The compiler converts a message expression,

into a call on a messaging function, objc_msgSend(). This function takes the
receiver and the name of the method mentioned in the message—that is, the
method selector—as its two principal arguments:

Any arguments passed in the message are also handed to objc_msgSend():

■

Worker *ceo = [[Worker alloc] init];
ceo->boss = nil;

[receiver message]

objc_msgSend(receiver , selector)

75

The messaging function does everything necessary for dynamic binding:

It first finds the procedure (method implementation) that the selector refers
to. Since the same method can be implemented differently by different
classes, the precise procedure that it finds depends on the class of the
receiver.

It then calls the procedure, passing it the receiving object (a pointer to its
data), along with any arguments that were specified for the method.

Finally, it passes on the return value of the procedure as its own return value.

Note: The compiler generates calls to the messaging function. You should never
call it directly in the code you write.

The key to messaging lies in the structures that the compiler builds for each
class and object. Every class structure includes these two essential elements:

A pointer to the superclass.

A class dispatch table. This table has entries that associate method selectors
with the class-specific addresses of the methods they identify. The selector
for the setOrigin:: method is associated with the address of (the procedure that
implements) setOrigin::, the selector for the display method is associated with
display’s address, and so on.

When a new object is created, memory for it is allocated, and its instance
variables are initialized. First among the object’s variables is a pointer to its class
structure. This pointer, called isa, gives the object access to its class and, through
the class, to all the classes it inherits from.

Note: While not strictly a part of the language, the isa pointer is required for an
object to work with NeXT’s run-time system. An object needs to be
“equivalent” to a struct objc_object (defined in objc/objc.h) in whatever fields the
structure defines. However, you will rarely if ever need to create your own root
object, and objects that inherit from NSObject or NSProxy automatically have
the isa variable.

These elements of class and object structure are illustrated in the following
figure.

objc_msgSend(receiver , selector , arg1 , arg2 , . . .)

■

■

■

■

■

Chapter 2 The Objective-C Language

76

When a message is sent to an object, the messaging function follows the object’s
isa pointer to the class structure where it looks up the method selector in the
dispatch table. If it can’t find the selector there, objc_msgSend() follows the pointer
to the superclass and tries to find the selector in its dispatch table. Successive
failures cause objc_msgSend() to climb the class hierarchy until it reaches the
NSObject class. Once it locates the selector, it calls the method entered in the
table and passes it the receiving object’s data structure.

. . .

superclass

selector...address
selector...address
selector...address

. . .
superclass

selector...address
selector...address
selector...address

. . .

superclass

selector...address
selector...address
selector...address

isa
instance variable
instance variable

. . .

The object’s superclass

The root class (NSObject)

The object’s class

77

This is the way that method implementations are chosen at run time—or, in the
jargon of object-oriented programming, that methods are dynamically bound to
messages.

To speed the messaging process, the run-time system caches the selectors and
addresses of methods as they are used. There’s a separate cache for each class,
and it can contain selectors for inherited methods as well as for methods defined
in the class. Before searching the dispatch tables, the messaging routine first
checks the cache of the receiving object’s class (on the theory that a method that
was used once may likely be used again). If the method selector is in the cache,
messaging is only slightly slower than a function call. Once a program has been
running long enough to “warm up” its caches, almost all the messages it sends
will find a cached method. Caches grow dynamically to accommodate new
messages as the program runs.

Selectors
For efficiency, full ASCII names are not used as method selectors in compiled
code. Instead, the compiler writes each method name into a table, then pairs the
name with a unique identifier that will represent the method at run time. The
run-time system makes sure each identifier is unique: No two selectors are the
same, and all methods with the same name have the same selector. Compiled
selectors are assigned to a special type, SEL, to distinguish them from other
data. Valid selectors are never 0.

A compiled selector contains fields of coded information that aid run-time
messaging. You should therefore let the system assign SEL identifiers to
methods; it won’t work to assign them arbitrarily yourself.

The @selector() directive lets Objective-C source code refer to the compiled
selector, rather than to the full method name. Here the selector for
setWidth:height: is assigned to the setWidthHeight variable:

It’s most efficient to assign values to SEL variables at compile time with the
@selector() directive. However, in some cases, a program may need to convert a
character string to a selector at run time. This can be done with the sel_getUid()
function:

SEL setWidthHeight;
setWidthHeight = @selector(setWidth:height:);

setWidthHeight = sel_getUid(aBuffer);

Chapter 2 The Objective-C Language

78

Conversion in the opposite direction is also possible. The sel_getName() function
returns a method name for a selector:

These and other run-time functions are described in the OPENSTEP
framework reference documentation.

Methods and Selectors
Compiled selectors identify method names, not method implementations.
Rectangle’s display method, for example, will have the same selector as display
methods defined in other classes. This is essential for polymorphism and
dynamic binding; it lets you send the same message to receivers belonging to
different classes. If there were one selector per method implementation, a
message would be no different than a function call.

A class method and an instance method with the same name are assigned the
same selector. However, because of their different domains, there’s no confusion
between the two. A class could define a display class method in addition to a
display instance method.

Method Return and Argument Types
The messaging routine has access to method implementations only through
selectors, so it treats all methods with the same selector alike. It discovers the
return type of a method, and the data types of its arguments, from the selector.
Therefore, except for messages sent to statically typed receivers, dynamic
binding requires all implementations of identically named methods to have the
same return type and the same argument types. (Statically typed receivers are
an exception to this rule, since the compiler can learn about the method
implementation from the class type.)

Although identically named class methods and instance methods are
represented by the same selector, they can have different argument and return
types.

Varying the Message at Run Time
The performSelector:, performSelector:withObject:, and
performSelector:withObject:withObject: methods, defined in the NSObject protocol,
take SEL identifiers as their initial arguments. All three methods map directly
into the messaging function. For example,

char *method;
method = sel_getName(setWidthHeight);

79

is equivalent to:

These methods make it possible to vary a message at run time, just as it’s
possible to vary the object that receives the message. Variable names can be
used in both halves of a message expression:

In this example, the receiver (helper) is chosen at run time (by the fictitious
getTheReceiver() function), and the method the receiver is asked to perform
(request) is also determined at run time (by the equally fictitious getTheSelector()
function).

Note: performSelector: and its companion methods return an id. If the method that’s
performed returns a different type, it should be cast to the proper type.
(However, casting won’t work for all types; the method should return a pointer
or a type compatible with a pointer.)

The Target-Action Paradigm
In its treatment of user-interface controls, the OpenStep Application Kit makes
good use of the ability to vary both the receiver and the message.

NSControls are graphical devices that can be used to give instructions to an
application. Most resemble real-world control devices such as buttons, switches,
knobs, text fields, dials, menu items, and the like. In software, these devices
stand between the application and the user. They interpret events coming from
hardware devices like the keyboard and mouse and translate them into
application-specific instructions. For example, a button labeled “Find” would
translate a mouse click into an instruction for the application to start searching
for something.

The Application Kit defines a template for creating control devices and defines
a few “off-the-shelf” devices of its own. For example, the NSButtonCell class

[friend performSelector:@selector(gossipAbout:)
withObject:aNeighbor];

[friend gossipAbout:aNeighbor];

id helper = getTheReceiver();
SEL request = getTheSelector();
[helper performSelector:request];

Chapter 2 The Objective-C Language

80

defines an object that you can assign to an NSMatrix and initialize with a size, a
label, a picture, a font, and a keyboard alternative. When the user clicks the
button (or uses the keyboard alternative), the NSButtonCell sends a message
instructing the application to do something. To do this, an NSButtonCell must
be initialized not just with an image, a size, and a label, but with directions on
what message to send and who to send it to. Accordingly, an NSButtonCell can
be initialized for an action message, the method selector it should use in the
message it sends, and a target, the object that should receive the message.

The NSButtonCell sends the message using NSObject’s
performSelector:withObject: method. All action messages take a single argument, the
id of the control device sending the message.

If Objective-C didn’t allow the message to be varied, all NSButtonCells would
have to send the same message; the name of the method would be frozen in the
NSButtonCell source code. Instead of simply implementing a mechanism for
translating user actions into action messages, NSButtonCells and other controls
would have to constrain the content of the message. This would make it difficult
for any object to respond to more than one NSButtonCell. There would either
have to be one target for each button, or the target object would have to discover
which button the message came from and act accordingly. Each time you
rearranged the user interface, you’d also have to re-implement the method that
responds to the action message. This would be an unnecessary complication
that Objective-C happily avoids.

Avoiding Messaging Errors
If an object receives a message to perform a method that isn’t in its repertoire,
an error results. It’s the same sort of error as calling a nonexistent function. But
because messaging occurs at run time, the error often won’t be evident until the
program executes.

It’s relatively easy to avoid this error when the message selector is constant and
the class of the receiving object is known. As you’re programming, you can
check to be sure that the receiver is able to respond. If the receiver is statically
typed, the compiler will check for you.

However, if the message selector or the class of the receiver varies, it may be
necessary to postpone this check until run time. The respondsToSelector: method,
defined in the NSObject class, determines whether a potential receiver can

[myButtonCell setAction:@selector(reapTheWind:)];
[myButtonCell setTarget:anObject];

81

respond to a potential message. It takes the method selector as an argument and
returns whether the receiver has access to a method matching the selector:

The respondsToSelector: test is especially important when sending messages to
objects that you don’t have control over at compile time. For example, if you
write code that sends a message to an object represented by a variable that
others can set, you should check to be sure the receiver implements a method
that can respond to the message.

Note: An object can also arrange to have the messages that it receives forwarded
to other objects if it can’t respond to them directly itself. In that case, it will
appear that the object can’t handle the message, even though it responds to it
indirectly by assigning it to another object. Forwarding is discussed in Chapter
4, “The Run-Time System.”

Hidden Arguments
When the messaging function finds the procedure that implements a method, it
calls the procedure and passes it all the arguments in the message. It also passes
the procedure two hidden arguments:

The receiving object
The selector for the method

These arguments give every method implementation explicit information
about the two halves of the message expression that invoked it. They’re said to
be “hidden” because they aren’t declared in the source code that defines the
method. They’re inserted into the implementation when the code is compiled.

Although these arguments aren’t explicitly declared, source code can still refer
to them (just as it can refer to the receiving object’s instance variables). A
method refers to the receiving object as self, and to its own selector as _cmd. In
the example below, _cmd refers to the selector for the strange method and self to
the object that receives a strange message.

if ([anObject respondsToSelector:@selector(setOrigin::)])
 [anObject setOrigin:0.0 :0.0];
else
 fprintf(stderr, "%s can’t be placed\n",

[anObject [NSStringFromClass([anObject class]) cString]]) ;

■

■

Chapter 2 The Objective-C Language

82

self is the more useful of the two arguments. It is, in fact, the way the receiving
object’s instance variables are made available to the method definition.

Although it can make your API more confusing, some methods that have no
other meaningful return value return self, rather than void. This enables such
messages to be nested in source code. For example, if setWidthHeight:, setFilled:,
and setFillColor: all returned self, you could write code like the following:

self is discussed in more detail in the next section.

Messages to self and super
Objective-C provides two terms that can be used within a method definition to
refer to the object that performs the method—self and super.

Suppose, for example, that you define a reposition method that needs to change
the coordinates of whatever object it acts on. It can invoke the setOrigin:: method
to make the change. All it needs to do is send a setOrigin:: message to the very
same object that the reposition message itself was sent to. When you’re writing
the reposition code, you can refer to that object as either self or super. The reposition
method could read either:

or:

- strange
{
 id target = getTheReceiver();
 SEL action = getTheMethod();

 if (target == self || action == _cmd)
 return nil;
 return [target performSelector:action];
}

[[[myRect setWidth:10.0 height:5.0] setFilled:YES]
 setFillColor:Green];

- reposition
{
 . . .
 [self setOrigin:someX :someY];
 . . .
}

83

Here self and super both refer to the object receiving a reposition message,
whatever object that may happen to be. The two terms are quite different,
however. self is one of the hidden arguments that the messaging routine passes
to every method; it’s a local variable that can be used freely within a method
implementation, just as the names of instance variables can be. super is a term
that substitutes for self only as the receiver in a message expression. As receivers,
the two terms differ principally in how they affect the messaging process:

self searches for the method implementation in the usual manner, starting in
the dispatch table of the receiving object’s class. In the example above, it
would begin with the class of the object receiving the reposition message.

super starts the search for the method implementation in a very different
place. It begins in the superclass of the class that defines the method where
super appears. In the example above, it would begin with the superclass of the
class where reposition is defined.

Wherever super receives a message, the compiler substitutes another messaging
routine for objc_msgSend(). The substitute routine looks directly to the superclass
of the defining class—that is, to the superclass of the class sending the message
to super—rather than to the class of the object receiving the message.

An Example
The difference between self and super becomes clear in a hierarchy of three
classes. Suppose, for example, that we create an object belonging to a class
called Low. Low’s superclass is Mid; Mid’s superclass is High. All three classes
define a method called negotiate, which they use for a variety of purposes. In
addition, Mid defines an ambitious method called makeLastingPeace, which also
has need of the negotiate method. This is illustrated in the following figure:

- reposition
{
 . . .
 [super setOrigin:someX :someY];
 . . .
}

■

■

Chapter 2 The Objective-C Language

84

We now send a message to our Low object to perform the makeLastingPeace
method, and makeLastingPeace, in turn, sends a negotiate message to the same Low
object. If source code calls this object self,

the messaging routine will find the version of negotiate defined in Low, self’s class.
However, if source code calls this object super,

Mid

High

Low

superclass

– negotiate

superclass

– negotiate

superclass

– negotiate

– makeLastingPeace

- makeLastingPeace
{
 [self negotiate];
 . . .
}

85

the messaging routine will find the version of negotiate defined in High. It ignores
the receiving object’s class (Low) and skips to the superclass of Mid, since Mid
is where makeLastingPeace is defined. Neither message finds Mid’s version of
negotiate.

As this example illustrates, super provides a way to bypass a method that
overrides another method. Here it enabled makeLastingPeace to avoid the Mid
version of negotiate that redefined the original High version.

Not being able to reach Mid’s version of negotiate may seem like a flaw, but,
under the circumstances, it’s right to avoid it:

The author of the Low class intentionally overrode Mid’s version of negotiate
so that instances of the Low class (and its subclasses) would invoke the
redefined version of the method instead. The designer of Low didn’t want
Low objects to perform the inherited method.

In sending the message to super, the author of Mid’s makeLastingPeace method
intentionally skipped over Mid’s version of negotiate (and over any versions
that might be defined in classes like Low that inherit from Mid) to perform
the version defined in the High class. Mid’s designer wanted to use the High
version of negotiate and no other.

Mid’s version of negotiate could still be used, but it would take a direct message
to a Mid instance to do it.

Using super
Messages to super allow method implementations to be distributed over more
than one class. You can override an existing method to modify or add to it, and
still incorporate the original method in the modification:

- makeLastingPeace
{
 [super negotiate];
 . . .
}

■

■

- negotiate
{
 . . .
 return [super negotiate];
}

Chapter 2 The Objective-C Language

86

For some tasks, each class in the inheritance hierarchy can implement a method
that does part of the job and pass the message on to super for the rest. The init
method, which initializes a newly allocated instance, is designed to work like
this. Each init method has responsibility for initializing the instance variables
defined in its class. But before doing so, it sends an init message to super to have
the classes it inherits from initialize their instance variables. Each version of init
follows this same procedure, so classes initialize their instance variables in the
order of inheritance:

It’s also possible to concentrate core functionality in one method defined in a
superclass, and have subclasses incorporate the method through messages to
super. For example, every class method that creates a new instance must allocate
storage for the new object and initialize its isa pointer to the class structure. This
is typically left to the alloc and allocWithZone: methods defined in the NSObject
class. If another class overrides these methods for any reason (a rare case), it can
still get the basic functionality by sending a message to super.

Redefining self
super is simply a flag to the compiler telling it where to begin searching for the
method to perform; it’s used only as the receiver of a message. But self is a
variable name that can be used in any number of ways, even assigned a new
value.

There’s a tendency to do just that in definitions of class methods. Class methods
are often concerned, not with the class object, but with instances of the class. For
example, a method might combine allocation and initialization of an instance:

In such a method, it’s tempting to send messages to the instance and to call the
instance self, just as in an instance method. But that would be an error. self and
super both refer to the receiving object—the object that gets a message telling it

- (id)init
{
 [super init];
 . . .
}

+ (id)newRect
{
 return [[self alloc] init];
}

87

to perform the method. Inside an instance method, self refers to the instance;
but inside a class method, self refers to the class object.

Before a class method can send a message telling self to perform an instance
method, it must redefine self to be the instance:

The method shown above is a class method, so, initially, self refers to the class
object. It’s as the class object that self receives the alloc message. self is then
redefined to be the instance that alloc returns and init initializes. It’s as the new
instance that it receives the setPrimaryColor: message.

To avoid confusion, it’s usually better to use a variable other than self to refer to
an instance inside a class method:

Note: In these examples, the class method sends messages (init and
setPrimaryColor:) to initialize the instance. It doesn’t assign a new value directly to
an instance variable as an instance method might have done:

Only instance variables of the receiver can be directly set this way. Because the
receiver for a class method (the class object) has no instance variables, this
syntax can’t be used. However, if newInstance had been statically typed,
something similar would have been possible:

+ (id)newRectofColor:(NSColor *)aColor
{
 self = [[self alloc] init];
 [self setPrimaryColor:aColor];
 return self;
}

+ (id)newRectofColor:(NSColor *)aColor
{
 id newInstance = [[self alloc] init];
 [newInstance setPrimaryColor:aColor];
 return newInstance;
}

linePattern = aPattern;
primaryColor = aColor;

newInstance->linePattern = aPattern;

Chapter 2 The Objective-C Language

88

See “Referring to Instance Variables” earlier in this chapter for more on when
this syntax is permitted.

Objective-C ExtensionsChapter 3

91

The preceding chapter has all you need to know about Objective-C to define
classes and design programs in the language. It covers basic Objective-C syntax
and explains the messaging process in detail.

Class definitions are at the heart of object-oriented programming, but they’re
not the only mechanism for structuring object definitions in Objective-C. This
chapter discusses two other ways of declaring methods and associating them
with a class:

Categories can compartmentalize a class definition or extend an existing one.
Protocols declare methods that can be implemented by any class.

The chapter also explains how static typing works and takes up some lesser used
features of Objective-C, including ways to temporarily overcome its inherent
dynamism.

Categories

You can add methods to a class by declaring them in an interface file under a
category name and defining them in an implementation file under the same
name. The category name indicates that the methods are additions to a class
declared elsewhere, not a new class.

A category can be an alternative to a subclass. Rather than define a subclass to
extend an existing class, through a category you can add methods to the class
directly. For example, you could add categories to NSArray and other OpenStep
classes. As in the case of a subclass, you don’t need source code for the class
you’re extending.

The methods the category adds become part of the class type. For example,
methods added to the NSArray class in a category will be among the methods
the compiler will expect an NSArray instance to have in its repertoire. Methods
added to the NSArray class in a subclass would not be included in the NSArray
type. (This matters only for statically typed objects, since static typing is the
only way the compiler can know an object’s class.)

Category methods can do anything that methods defined in the class proper can
do. At run time, there’s no difference. The methods the category adds to the
class are inherited by all the class’s subclasses, just like other methods.

■

■

Chapter 3 Objective-C Extensions

92

Adding to a Class
The declaration of a category interface looks very much like a class interface
declaration—except the category name is listed within parentheses after the
class name and the superclass isn’t mentioned. Unless its methods don’t access
any instance variables of the class, the category must import the interface file for
the class it extends:

The implementation, as usual, imports its own interface. Assuming that
interface and implementation files are named after the category, a category
implementation looks like this:

Note that a category can’t declare any new instance variables for the class; it
includes only methods. However, all instance variables within the scope of the
class are also within the scope of the category. That includes all instance
variables declared by the class, even ones declared @private.

There’s no limit to the number of categories that you can add to a class, but each
category name must be different, and each should declare and define a different
set of methods.

The methods added in a category can be used to extend the functionality of the
class or override methods the class inherits. A category can also override
methods declared in the class interface. However, it cannot reliably override
methods declared in another category of the same class. A category is not a
substitute for a subclass. It’s best if categories don’t attempt to redefine methods
that aren’t explicitly declared in the class’s @interface section. Also note that a
class shouldn’t define the same method more than once.

Note: When a category overrides an inherited method, the new version can, as
usual, incorporate the inherited version through a message to super. But there’s

#import " ClassName .h"

@interface ClassName (CategoryName)
method declarations
@end

#import " CategoryName .h"

@implementation ClassName (CategoryName)
method definitions
@end

93

no way for a category method to incorporate a method with the same name
defined for the same class.

How Categories Are Used
Categories can be used to extend classes defined by other implementors—for
example, you can add methods to the classes defined in the OpenStep
frameworks. The added methods will be inherited by subclasses and will be
indistinguishable at run time from the original methods of the class.

Categories can also be used to distribute the implementation of a new class into
separate source files—for example, you could group the methods of a large class
into several categories and put each category in a different file. When used like
this, categories can benefit the development process in a number of ways:

They provide a simple way of grouping related methods. Similar methods
defined in different classes can be kept together in the same source file.

They simplify the management of a large class when more than one
developer is contributing to the class definition.

They let you achieve some of the benefits of incremental compilation for a
very large class.

They can help improve locality of reference for commonly used methods.

They enable you to configure a class differently for different applications,
without having to maintain different versions of the same source code.

Categories are also used to declare informal protocols, as discussed under
“Protocols” below.

Categories of the Root Class
A category can add methods to any class, including the root class. Methods
added to NSObject become available to all classes that are linked to your code.
While this can be useful at times, it can also be quite dangerous. Although it may
seem that the modifications the category makes are well understood and of
limited impact, inheritance gives them a wide scope. You may be making
unintended changes to unseen classes; you may not know all the consequences
of what you’re doing. Moreover, others who are unaware of your changes won’t
understand what they’re doing.

In addition, there are two other considerations to keep in mind when
implementing methods for the root class:

■

■

■

■

■

Chapter 3 Objective-C Extensions

94

Messages to super are invalid (there is no superclass).
Class objects can perform instance methods defined in the root class.

Normally, class objects can perform only class methods. But instance methods
defined in the root class are a special case. They define an interface to the run-
time system that all objects inherit. Class objects are full-fledged objects and
need to share the same interface.

This feature means that you need to take into account the possibility that an
instance method you define in a category of the NSObject class might be
performed not only by instances but by class objects as well. For example,
within the body of the method, self might mean a class object as well as an
instance. See the NSObject class specification in the Foundation Framework
Reference for more information on class access to root instance methods.

Protocols

Class and category interfaces declare methods that are associated with a
particular class—mainly methods that the class implements. Informal and
formal protocols, on the other hand, declare methods not associated with a class,
but which any class, and perhaps many classes, might implement.

A protocol is simply a list of method declarations, unattached to a class
definition. For example, these methods that report user actions on the mouse
could be gathered into a protocol:

Any class that wanted to respond to mouse events could adopt the protocol and
implement its methods.

Protocols free method declarations from dependency on the class hierarchy, so
they can be used in ways that classes and categories cannot. Protocols list
methods that are (or may be) implemented somewhere, but the identity of the
class that implements them is not of interest. What is of interest is whether or
not a particular class conforms to the protocol—whether it has implementations
of the methods the protocol declares. Thus objects can be grouped into types
not just on the basis of similarities due to the fact that they inherit from the same
class, but also on the basis of their similarity in conforming to the same protocol.

■

■

- (void)mouseDown:(NSEvent *)theEvent;
- (void)mouseDragged:(NSEvent *)theEvent;
- (void)mouseUp:(NSEvent *)theEvent;

95

Classes in unrelated branches of the inheritance hierarchy might be typed alike
because they conform to the same protocol.

Protocols can play a significant role in object-oriented design, especially where
a project is divided among many implementors or it incorporates objects
developed in other projects. OPENSTEP software uses them heavily to support
interprocess communication through Objective-C messages.

However, an Objective-C program doesn’t need to use protocols. Unlike class
definitions and message expressions, they’re optional. Some OPENSTEP
frameworks use them; some don’t. It all depends on the task at hand.

How Protocols Are Used
Protocols are useful in at least three different situations:

To declare methods that others are expected to implement
To declare the interface to an object while concealing its class
To capture similarities among classes that are not hierarchically related

The following sections discuss these situations and the roles protocols can play.

Methods for Others to Implement
If you know the class of an object, you can look at its interface declaration (and
the interface declarations of the classes it inherits from) to find what messages it
responds to. These declarations advertise the messages it can receive. Protocols
provide a way for it to also advertise the messages it sends.

Communication works both ways; objects send messages as well as receive
them. For example, an object might delegate responsibility for a certain
operation to another object, or it may on occasion simply need to ask another
object for information. In some cases, an object might be willing to notify other
objects of its actions so that they can take whatever collateral measures might be
required.

If you develop the class of the sender and the class of the receiver as part of the
same project (or if someone else has supplied you with the receiver and its
interface file), this communication is easily coordinated. The sender simply
imports the interface file of the receiver. The imported file declares the method
selectors the sender uses in the messages it sends.

However, if you develop an object that sends messages to objects that aren’t yet
defined—objects that you’re leaving for others to implement—you won’t have
the receiver’s interface file. You need another way to declare the methods you
use in messages but don’t implement. A protocol serves this purpose. It informs

■

■

■

Chapter 3 Objective-C Extensions

96

the compiler about methods the class uses and also informs other implementors
of the methods they need to define to have their objects work with yours.

Suppose, for example, that you develop an object that asks for the assistance of
another object by sending it helpOut: and other messages. You provide an assistant
instance variable to record the outlet for these messages and define a companion
method to set the instance variable. This method lets other objects register
themselves as potential recipients of your object’s messages:

Then, whenever a message is to be sent to the assistant, a check is made to be
sure that the receiver implements a method that can respond:

Since, at the time you write this code, you can’t know what kind of object might
register itself as the assistant, you can only declare a protocol for the helpOut:
method; you can’t import the interface file of the class that implements it.

Anonymous Objects
A protocol can also be used to declare the methods of an anonymous object, an
object of unknown class. An anonymous object may represent a service or
handle a limited set of functions, especially where only one object of its kind is
needed. (Objects that play a fundamental role in defining an application’s
architecture and objects that you must initialize before using are not good
candidates for anonymity.)

Objects can’t be anonymous to their developers, of course, but they can be
anonymous when the developer supplies them to someone else. For example,
an anonymous object might be part of a framework or be located in a remote
process:

- setAssistant:anObject
{
 assistant = anObject;
 return self;
}

- (BOOL)doWork
{
 . . .

 if ([assistant respondsTo:@selector(helpOut:)]) {
 [assistant helpOut:self];
 return YES;
 }
 return NO;
}

97

Someone who supplies a framework or a suite of objects for others to use can
include objects that are not identified by a class name or an interface file.
Lacking the name and class interface, users have no way of creating instances
of the class. Instead, the supplier must provide a ready-made instance.
Typically, a method in another class returns a usable object:

The object returned by the method is an object without a class identity, at
least not one the supplier is willing to reveal. For it to be of any use at all, the
supplier must be willing to identify at least some of the messages that it can
respond to. This is done by associating the object with a list of methods
declared in a protocol.

It’s possible to send Objective-C messages to remote objects—objects in other
applications. (The next section, “Remote Messaging,” discusses this
possibility in more detail.)

Each application has its own structure, classes, and internal logic. But you
don’t need to know how another application works or what its components
are to communicate with it. As an outsider, all you need to know is what
messages you can send (the protocol) and where to send them (the receiver).

An application that publishes one of its objects as a potential receiver of
remote messages must also publish a protocol declaring the methods the
object will use to respond to those messages. It doesn’t have to disclose
anything else about the object. The sending application doesn’t need to
know the class of the object or use the class in its own design. All it needs is
the protocol.

Protocols make anonymous objects possible. Without a protocol, there would be
no way to declare an interface to an object without identifying its class.

Note: Even though the supplier of an anonymous object won’t reveal its class, the
object itself will reveal it at run time. A class message will return the anonymous
object’s class. However, there’s usually little point in discovering this extra
information; the information in the protocol is sufficient.

Non-Hierarchical Similarities
If more than one class implements a set of methods, those classes are often
grouped under an abstract class that declares the methods they have in common.
Each subclass may reimplement the methods in its own way, but the inheritance

■

id formatter = [receiver formattingService];

■

Chapter 3 Objective-C Extensions

98

hierarchy and the common declaration in the abstract class captures the essential
similarity between the subclasses.

However, sometimes it’s not possible to group common methods in an abstract
class. Classes that are unrelated in most respects might nevertheless need to
implement some similar methods. This limited similarity may not justify a
hierarchical relationship. For example, many different kinds of classes might
implement methods to facilitate reference counting (this is just an example,
since the Foundation Framework already implements reference counting for
you):

These methods could be grouped into a protocol and the similarity between
implementing classes accounted for by noting that they all conform to the same
protocol.

Objects can be typed by this similarity (the protocols they conform to), rather
than by their class. For example, an NSMatrix must communicate with the
objects that represent its cells. The NSMatrix could require each of these
objects to be a kind of NSCell (a type based on class) and rely on the fact that
all objects that inherit from the NSCell class will have the methods needed to
respond to NSMatrix messages. Alternatively, the NSMatrix could require
objects representing cells to have methods that can respond to a particular set of
messages (a type based on protocol). In this case, the NSMatrix wouldn’t care
what class a cell object belonged to, just that it implemented the methods.

Informal Protocols
The simplest way of declaring a protocol is to group the methods in a category
declaration:

Informal protocols are typically declared as categories of the NSObject class,
since that broadly associates the method names with any class that inherits from

- setRefCount:(int)count;
- (int)refCount;
- incrementCount;
- decrementCount;

@interface NSObject (RefCounting)
- setRefCount:(int)count;
- (int)refCount;
- incrementCount;
- decrementCount;
@end

99

NSObject. Because all classes inherit from the root class, the methods aren’t
restricted to any part of the inheritance hierarchy. (It would also be possible to
declare an informal protocol as a category of another class to limit it to a certain
branch of the inheritance hierarchy, but there is little reason to do so.)

When used to declare a protocol, a category interface doesn’t have a
corresponding implementation. Instead, classes that implement the protocol
declare the methods again in their own interface files and define them along
with other methods in their implementation files.

An informal protocol bends the rules of category declarations to list a group of
methods but not associate them with any particular class or implementation.

Being informal, protocols declared in categories don’t receive much language
support. There’s no type checking at compile time nor a check at run time to see
whether an object conforms to the protocol. To get these benefits, you must use
a formal protocol.

Formal Protocols
The Objective-C language provides a way to formally declare a list of methods
as a protocol. Formal protocols are supported by the language and the run-time
system. For example, the compiler can check for types based on protocols, and
objects can introspect at run time to report whether or not they conform to a
protocol.

Formal protocols are declared with the @protocol directive:

For example, the reference-counting protocol could be declared like this:

Unlike class names, protocol names don’t have global visibility. They live in
their own name space.

@protocol ProtocolName
method declarations
@end

@protocol ReferenceCounting
- setRefCount:(int)count;
- (int)refCount;
- incrementCount;
- decrementCount;
@end

Chapter 3 Objective-C Extensions

100

A class is said to adopt a formal protocol if it agrees to implement the methods
the protocol declares. Class declarations list the names of adopted protocols
within angle brackets after the superclass name:

Categories adopt protocols in much the same way:

Names in the protocol list are separated by commas.

A class or category that adopts a protocol must import the header file where the
protocol is declared. The methods declared in the adopted protocol are not
declared elsewhere in the class or category interface.

It’s possible for a class to simply adopt protocols and declare no other methods.
For example, this class declaration,

adopts the Formatting and Prettifying protocols, but declares no instance
variables or methods of its own.

A class or category that adopts a protocol is obligated to implement all the
methods the protocol declares. The compiler will issue a warning if it does not.
The Formatter class above would define all the methods declared in the two
protocols it adopts, in addition to any it might have declared itself.

Adopting a protocol is similar in some ways to declaring a superclass. Both assign
methods to the new class. The superclass declaration assigns it inherited
methods; the protocol assigns it methods declared in the protocol list.

Protocol Objects
Just as classes are represented at run time by class objects and methods by
selector codes, formal protocols are represented by a special data type—
instances of the Protocol class. Source code that deals with a protocol (other than
to use it in a type specification) must refer to the Protocol object.

@interface ClassName : ItsSuperclass < protocol list >

@interface ClassName (CategoryName) < protocol list >

@interface Formatter : NSObject < Formatting, Prettifying >
@end

101

In many ways, protocols are similar to class definitions. They both declare
methods, and at run time they’re both represented by objects—classes by class
objects and protocols by Protocol objects. Like class objects, Protocol objects are
created automatically from the definitions and declarations found in source code
and are used by the run-time system. They’re not allocated and initialized in
program source code.

Source code can refer to a Protocol object using the @protocol() directive—the
same directive that declares a protocol, except that here it has a set of trailing
parentheses. The parentheses enclose the protocol name:

This is the only way that source code can conjure up a Protocol object. Unlike a
class name, a protocol name doesn’t designate the object—except inside
@protocol().

The compiler creates a Protocol object for each protocol declaration it
encounters, but only if the protocol is also:

Adopted by a class, or
Referred to somewhere in source code (using @protocol()).

Protocols that are declared but not used (except for type checking as described
below) aren’t represented by Protocol objects at run-time.

Conforming to a Protocol
A class is said to conform to a formal protocol if it adopts the protocol or inherits
from a class that adopts it. An instance of a class is said to conform to the same
set of protocols its class conforms to.

Since a class must implement all the methods declared in the protocols it adopts,
and those methods are inherited by its subclasses, saying that a class or an
instance conforms to a protocol is tantamount to saying that it has in its
repertoire all the methods that the protocol declares.

It’s possible to check whether an object conforms to a protocol by sending it a
conformsTo: message.

Protocol *counter = @protocol(ReferenceCounting);

■

■

if ([receiver conformsTo:@protocol(ReferenceCounting)])

 [receiver incrementCount];

Chapter 3 Objective-C Extensions

102

The conformsTo: test is very much like the respondsTo: test for a single method,
except that it tests whether a protocol has been adopted (and presumably all the
methods it declares implemented) rather than just whether one particular
method has been implemented. Because it checks for a whole list of methods,
conformsTo: can be more efficient than respondsTo:.

The conformsTo: test is also very much like the isKindOf: test, except that it tests for
a type based on a protocol rather than a type based on the inheritance hierarchy.

Type Checking
Type declarations for objects can be extended to include formal protocols.
Protocols thus offer the possibility of another level of type checking by the
compiler, one that’s more abstract since it’s not tied to particular
implementations.

In a type declaration, protocol names are listed between angle brackets after the
type name:

Just as static typing permits the compiler to test for a type based on the class
hierarchy, this syntax permits the compiler to test for a type based on
conformance to a protocol.

For example, if Formatter is an abstract class, this declaration

groups all objects that inherit from Formatter into a type and permits the
compiler to check assignments against that type.

Similarly, this declaration,

groups all objects that conform to the Formatting protocol into a type, regardless
of their positions in the class hierarchy. The compiler can check to be sure that
only objects that conform to the protocol are assigned to the type.

- (id <Formatting>)formattingService;
id <ReferenceCounting, AutoFreeing> anObject;

Formatter *anObject;

id <Formatting> anObject;

103

In each case, the type groups similar objects—either because they share a
common inheritance, or because they converge on a common set of methods.

The two types can be combined in a single declaration:

Protocols can’t be used to type class objects. Only instances can be statically
typed to a protocol, just as only instances can be statically typed to a class.
(However, at run time, both classes and instances will respond to a conformsTo:
message.)

Protocols within Protocols
One protocol can incorporate others using the same syntax that classes use to
adopt a protocol:

All the protocols listed between angle brackets are considered part of the
ProtocolName protocol. For example, if the Paging protocol incorporates the
Formatting protocol,

any object that conforms to the Paging protocol will also conform to Formatting.
Type declarations

and conformsTo: messages

need mention only the Paging protocol to test for conformance to Formatting as
well.

Formatter <Formatting> *anObject;

@protocol ProtocolName < protocol list >

@protocol Paging < Formatting >

id <Paging> someObject;

if ([anotherObject conformsTo:@protocol(Paging)])
 . . .

Chapter 3 Objective-C Extensions

104

When a class adopts a protocol, it must implement the methods the protocol
declares, as mentioned earlier. In addition, it must conform to any protocols the
adopted protocol incorporates. If an incorporated protocol incorporates still
other protocols, the class must also conform to them. A class can conform to an
incorporated protocol by either:

Implementing the methods the protocol declares, or
Inheriting from a class that adopts the protocol and implements the methods.

Suppose, for example, that the Pager class adopts the Paging protocol. If Pager
is a subclass of NSObject,

it must implement all the Paging methods, including those declared in the
incorporated Formatting protocol. It adopts the Formatting protocol along with
Paging.

On the other hand, if Pager is a subclass of Formatter (a class that independently
adopts the Formatting protocol),

it must implement all the methods declared in the Paging protocol proper, but
not those declared in Formatting. Pager inherits conformance to the Formatting
protocol from Formatter.

Note that a class can conform to a protocol without formally adopting it simply
by implementing the methods declared in the protocol.

Referring to Other Protocols
When working on complex applications, you occasionally find yourself writing
code that looks like this:

■

■

@interface Pager : NSObject < Paging >

@interface Pager : Formatter < Paging >

#import "B.h"

@protocol A

- foo:(id)anObject;

@end

105

where protocol B is declared like this:

In such a situation, circularity results and neither file will compile correctly. To
break this recursive cycle, you must use the @protocol directive to make a forward
reference to the needed protocol instead of importing the interface file where
the protocol is defined. The following code excerpt illustrates how you would
do this:

Note that using the @protocol directive in this manner simply informs the
compiler that “B” is a protocol to be defined later. It doesn’t import the interface
file where protocol B is defined.

Remote Messaging

Like most other programming languages, Objective-C was initially designed for
programs that are executed as a single process in a single address space.

Nevertheless, the object-oriented model, where communication takes place
between relatively self-contained units through messages that are resolved at
run-time, would seem well suited for interprocess communication as well. It’s
not hard to imagine Objective-C messages between objects that reside in
different address spaces (that is, in different tasks) or in different threads of
execution of the same task.

For example, in a typical server-client interaction, the client task might send its
requests to a designated object in the server, and the server might target specific
client objects for the notifications and other information it sends.

#import "A.h"

@protocol B

- bar:(id <A>)anObject;

@end

@protocol B;

@protocol A

- foo:(id)anObject;

@end

Chapter 3 Objective-C Extensions

106

Or imagine an interactive application that needs to do a good deal of
computation to carry out a user command. It could simply put up an attention
panel telling the user to wait while it was busy, or it could isolate the processing
work in a subordinate task, leaving the main part of the application free to accept
user input. Objects in the two tasks would communicate through Objective-C
messages.

Similarly, several separate processes could cooperate on the editing of a single
document. There could be a different editing tool for each type of data in the
document. One task might be in charge of presenting a unified user interface on-
screen and of sorting out which user instructions were the responsibility of
which editing tool. Each cooperating task could be written in Objective-C, with
Objective-C messages being the vehicle of communication between the user
interface and the tools and between one tool and another.

Distributed Objects
Remote messaging in Objective-C requires a run-time system that can establish
connections between objects in different address spaces, recognize when a
message is intended for a remote address, and transfer data from one address
space to another. It must also mediate between the separate schedules of the
two tasks; it has to hold messages until their remote receivers are free to respond
to them.

OpenStep includes a distributed objects architecture that is essentially this kind of
extension to the run-time system. Using distributed objects, you can send
Objective-C messages to objects in other tasks or have messages executed in
other threads of the same task. (When remote messages are sent between two
threads of the same task, the threads are treated exactly like threads in different
tasks.) Note that OpenStep’s distributed objects system is built on top of the
run-time system; it doesn’t alter the fundamental behavior of your OpenStep
objects.

To send a remote message, an application must first establish a connection with
the remote receiver. Establishing the connection gives the application a proxy
for the remote object in its own address space. It then communicates with the
remote object through the proxy. The proxy assumes the identity of the remote
object; it has no identity of its own. The application is able to regard the proxy
as if it were the remote object; for most purposes, it is the remote object.

Remote messaging is diagrammed below, where object A communicates
with object B through a proxy, and messages for B wait in a queue until B is
ready to respond to them:

107

The sender and receiver are in different tasks and are scheduled independently
of each other. So there’s no guarantee that the receiver will be free to accept a
message when the sender is ready to send it. Therefore, arriving messages are
placed in a queue and retrieved at the convenience of the receiving application.

A proxy doesn’t act on behalf of the remote object or need access to its class. It
isn’t a copy of the object, but a lightweight substitute for it. In a sense, it’s
transparent; it simply passes the messages it receives on to the remote receiver
and manages the interprocess communication. Its main function is to provide a
local address for an object that wouldn’t otherwise have one. A proxy isn’t fully
transparent, however. For instance, a proxy doesn’t allow you to directly set and
get an object’s instance variables.

A remote receiver is typically anonymous. Its class is hidden inside the remote
application. The sending application doesn’t need to know how that application
is designed or what classes it uses. It doesn’t need to use the same classes itself.
All it needs to know is what messages the remote object responds to.

Because of this, an object that’s designated to receive remote messages typically
advertises its interface in a formal protocol. Both the sending and the receiving
application declare the protocol—they both import the same protocol
declaration. The receiving application declares it because the remote object
must conform to the protocol. The sending application declares it to inform the
compiler about the messages it sends and because it may use the conformsTo:
method and the @protocol() directive to test the remote receiver. The sending
application doesn’t have to implement any of the methods in the protocol; it
declares the protocol only because it initiates messages to the remote receiver.

The distributed objects architecture, including the NSProxy and
NSConnection classes, is documented in the Foundation Framework Reference.

Language Support
Remote messaging raises not only a number of intriguing possibilities for
program design, it also raises some interesting issues for the Objective-C
language. Most of the issues are related to the efficiency of remote messaging

BA
Proxy

for
B

Chapter 3 Objective-C Extensions

108

and the degree of separation that the two tasks should maintain while they’re
communicating with each other.

So that programmers can give explicit instructions about the intent of a remote
message, Objective-C defines six type qualifiers that can be used when
declaring methods inside a formal protocol:

oneway
in
out
inout
bycopy
byref

These modifiers are restricted to formal protocols; they can’t be used inside class
and category declarations. However, if a class or category adopts a protocol, its
implementation of the protocol methods can use the same modifiers that are
used to declare the methods.

The following sections explain how these modifiers are used.

Synchronous and Asynchronous Messages
Consider first a method with just a simple return value:

When a canDance message is sent to a receiver in the same application, the
method is invoked and the return value provided directly to the sender. But
when the receiver is in a remote application, two underlying messages are
required—one message to get the remote object to invoke the method, and the
other message to send back the result of the remote calculation. This is
illustrated in the figure below:

Most remote messages will be, at bottom, two-way (or “round trip”) remote
procedure calls (RPCs) like this one. The sending application waits for the

- (BOOL)canDance;

Proxy
for
B

B

initial message

return information

A

109

receiving application to invoke the method, complete its processing, and send
back an indication that it has finished, along with any return information
requested. Waiting for the receiver to finish, even if no information is returned,
has the advantage of coordinating the two communicating applications, of
keeping them both “in sync.” For this reason, round-trip messages are often
called synchronous. Synchronous messages are the default.

However, it’s not always necessary or a good idea to wait for a reply. Sometimes
it’s sufficient simply to dispatch the remote message and return, allowing the
receiver to get to the task when it will. In the meantime, the sender can go on to
other things. Objective-C provides a return type modifier, oneway, to indicate
that a method is used only for asynchronous messages:

Although oneway is a type qualifier (like const) and can be used in combination
with a specific type name, such as oneway float or oneway id, the only such
combination that makes any sense is oneway void. An asynchronous message can’t
have a valid return value.

Pointer Arguments
Next, consider methods that take pointer arguments. A pointer can be used to
pass information to the receiver by reference. When invoked, the method looks
at what’s stored in the address it’s passed.

The same sort of argument can also be used to return information by reference.
The method uses the pointer to find where it should place information
requested in the message.

- (oneway void)waltzAtWill;

- setTune:(struct tune *)aSong
{
 tune = *aSong;
 . . .
}

- getTune:(struct tune *)theSong
{
 . . .
 *theSong = tune;
}

Chapter 3 Objective-C Extensions

110

The way the pointer is used makes a difference in how the remote message is
carried out. In neither case can the pointer simply be passed to the remote
object unchanged; it points to a memory location in the sender’s address space
and would not be meaningful in the address space of the remote receiver. The
run-time system for remote messaging must make some adjustments behind
the scenes.

If the argument is used to pass information by reference, the run-time system
must dereference the pointer, ship the value it points to over to the remote
application, store the value in an address local to that application, and pass that
address to the remote receiver.

If, on the other hand, the pointer is used to return information by reference, the
value it points to doesn’t have to be sent to the other application. Instead, a value
from the other application must be sent back and written into the location
indicated by the pointer.

In the one case, information is passed on the first leg of the round trip. In the
other case, information is returned on the second leg of the round trip. Because
these cases result in very different actions on the part of the run-time system for
remote messaging, Objective-C provides type modifiers that can clarify the
programmer’s intention:

The type modifier in indicates that information is being passed in a message:

The modifier out indicates that an argument is being used to return
information by reference:

A third modifier, inout, indicates that an argument is used both to provide
information and to get information back:

The OpenStep distributed objects system takes inout to be the default modifier
for all pointer arguments except those declared const, for which in is the default.
inout is the safest assumption but also the most time-consuming since it requires
passing information in both directions. The only modifier that makes sense for

■

- setTune:(in struct tune *)aSong;

■

- getTune:(out struct tune *)theSong;

■

- adjustTune:(inout struct tune *)aSong;

111

arguments passed by value (non-pointers) is in. While in can be used with any
kind of argument, out and inout make sense only for pointers.

In C, pointers are sometimes used to represent composite values. For example,
a string is represented as a character pointer (char *). Although in notation and
implementation there’s a level of indirection here, in concept there’s not.
Conceptually, a string is an entity in and of itself, not a pointer to something else.

In cases like this, the distributed objects system automatically dereferences the
pointer and passes whatever it points to as if by value. Therefore, the out and
inout modifiers make no sense with simple character pointers. It takes an
additional level of indirection in a remote message to pass or return a string by
reference:

The same is true of objects:

These conventions are enforced at run time, not by the compiler.

Proxies and Copies
Finally, consider a method that takes an object as an argument:

A danceWith: message passes an object id to the receiver. If the sender and
receiver are in the same application, they would both be able to refer to the same
aPartner object.

This is true even if the receiver is in a remote application, except that the
receiver will need to refer to the object through a proxy (since the object isn’t in
its address space). The pointer that danceWith: delivers to a remote receiver is
actually a pointer to the proxy. Messages sent to the proxy would be passed
across the connection to the real object and any return information would be
passed back to the remote application.

- getTuneTitle:(out char **)theTitle;

- adjustRectangle:(inout Rectangle **)theRect;

- danceWith:(id)aPartner;

Chapter 3 Objective-C Extensions

112

There are times when proxies may be unnecessarily inefficient, when it’s better
to send a copy of the object to the remote process so that it can interact with it
directly in its own address space. To give programmers a way to indicate that this
is intended, Objective-C provides a bycopy type modifier:

bycopy can also be used for return values:

It can similarly be used with out to indicate that an object returned by reference
should be copied rather than delivered in the form of a proxy:

Note: When a copy of an object is passed to another application, it cannot be
anonymous. The application that receives the object must have the class of the
object loaded in its address space.

bycopy makes so much sense for certain classes—classes that are intended to
contain a collection of other objects, for instance—that often these classes are
written so that a copy is sent to a remote receiver, instead of the usual reference.
You can override this behavior with byref, however, thereby specifying that
objects passed into or out of a method should all be passed by reference. Since
passing by reference is the default behavior for the vast majority of Objective-C
objects, you will rarely, if ever, make use of the byref keyword.

The only type that it makes sense for bycopy or byref to modify is an object,
whether dynamically typed id or statically typed by a class name.

Although bycopy and byref can’t be used inside class and category declarations,
they can be used within formal protocols. For instance, you could write a formal
protocol foo as follows:

- danceWith:(bycopy id)aClone;

- (bycopy)dancer;

- getDancer:(bycopy out id *)theDancer;

@Protocol foo

- (bycopy)array;
@end

113

A class or category can then adopt your protocol foo. This allows you to construct
protocols so that they provide “hints” as to how objects should be passed and
returned by the methods described by the protocol.

Static Options

Objective-C objects are dynamic entities. As many decisions about them as
possible are pushed from compile time to run time:

The memory for objects is dynamically allocated at run time by class methods
that create new instances.

Objects are dynamically typed. In source code (at compile time), any object can
be of type id no matter what its class. The exact class of an id variable (and
therefore its particular methods and data structure) isn’t determined until the
program is running.

Messages and methods are dynamically bound, as described under “How
Messaging Works” in the previous chapter. A run-time procedure matches
the method selector in the message to a method implementation that
“belongs to” the receiver.

These features give object-oriented programs a great deal of flexibility and
power, but there’s a price to pay. Messages are somewhat slower than function
calls, for example, (though not much slower due to the efficiency of the run-time
system) and the compiler can’t check the exact types (classes) of id variables.

To permit better compile-time type checking, and to make code more self-
documenting, Objective-C allows objects to be statically typed with a class
name rather than generically typed as id. It also lets you turn some of its object-
oriented features off in order to shift operations from run time back to compile
time.

Static Typing
If a pointer to a class name is used in place of id in an object declaration,

■

■

■

Rectangle *thisObject;

Chapter 3 Objective-C Extensions

114

the compiler restricts the declared variable to be either an instance of the class
named in the declaration or an instance of a class that inherits from the named
class. In the example above, thisObject can only be a Rectangle of some kind.

Statically typed objects have the same internal data structures as objects
declared to be ids. The type doesn’t affect the object; it affects only the amount
of information given to the compiler about the object and the amount of
information available to those reading the source code.

Static typing also doesn’t affect how the object is treated at run time. Statically
typed objects are dynamically allocated by the same class methods that create
instances of type id. If Square is a subclass of Rectangle, the following code
would still produce an object with all the instance variables of a Square, not just
those of a Rectangle:

Messages sent to statically typed objects are dynamically bound, just as objects
typed id are. The exact type of a statically typed receiver is still determined at
run time as part of the messaging process. A display message sent to thisObject

will perform the version of the method defined in the Square class, not its
Rectangle superclass.

By giving the compiler more information about an object, static typing opens up
possibilities that are absent for objects typed id:

In certain situations, it allows for compile-time type checking.

It can free objects from the restriction that identically named methods must
have identical return and argument types.

It permits you to use the structure pointer operator to directly access an
object’s instance variables.

The first two topics are discussed in the sections below. The third was covered
in the previous chapter under “Defining A Class.”

Rectangle *thisObject = [[Square alloc] init];

[thisObject display];

■

■

■

115

Type Checking
With the additional information provided by static typing, the compiler can
deliver better type-checking services in two situations:

When a message is sent to a statically typed receiver, the compiler can check
to be sure that the receiver can respond. A warning is issued if the receiver
doesn’t have access to the method named in the message.

When a statically typed object is assigned to a statically typed variable, the
compiler can check to be sure that the types are compatible. A warning is
issued if they’re not.

An assignment can be made without warning provided the class of the object
being assigned is identical to, or inherits from, the class of the variable receiving
the assignment. This is illustrated in the example below.

Here aRect can be assigned to aShape because a Rectangle is a kind of Shape—
the Rectangle class inherits from Shape. However, if the roles of the two
variables are reversed and aShape is assigned to aRect, the compiler will generate
a warning; not every Shape is a Rectangle. (For reference, see the figure in the
previous chapter that shows the class hierarchy including Shape and Rectangle.)

There’s no check when the expression on either side of the assignment operator
is an id. A statically typed object can be freely assigned to an id, or an id to a
statically typed object. Because methods like alloc and init return ids, the
compiler doesn’t check to be sure that a compatible object is returned to a
statically typed variable. The following code is error-prone, but is allowed
nonetheless:

Note: This is consistent with the semantics of void * (pointer to void) in ANSI C.
Just as void * is a generic pointer that eliminates the need for coercion in
assignments between pointers, id is a generic pointer to objects that eliminates
the need for coercion to a particular class in assignments between objects.

■

■

Shape *aShape;
Rectangle *aRect;

aRect = [[Rectangle alloc] init];
aShape = aRect;

Rectangle *aRect;
aRect = [[Shape alloc] init];

Chapter 3 Objective-C Extensions

116

Return and Argument Types
In general, methods that share the same selector (the same name) must also
share the same return and argument types. This constraint is imposed by
dynamic binding. Because the class of a message receiver, and therefore class-
specific details about the method it’s asked to perform, can’t be known at
compile time, the compiler must treat all methods with the same name alike.
When it prepares information on method return and argument types for the run-
time system, it creates just one method description for each method selector.

However, when a message is sent to a statically typed object, the class of the
receiver is known by the compiler. The compiler has access to class-specific
information about the methods. Therefore, the message is freed from the
restrictions on its return and argument types.

Static Typing to an Inherited Class
An instance can be statically typed to its own class or to any class that it inherits
from. All instances, for example, can be statically typed as NSObjects.

However, the compiler understands the class of a statically typed object only
from the class name in the type designation, and it does its type checking
accordingly. Typing an instance to an inherited class can therefore result in
discrepancies between what the compiler thinks would happen at run time and
what will actually happen.

For example, if you statically type a Rectangle instance as a Shape,

the compiler will treat it as a Shape. If you send the object a message to perform
a Rectangle method,

the compiler will complain. The isFilled method is defined in the Rectangle class,
not in Shape.

However, if you send it a message to perform a method that the Shape class
knows about,

Shape *myRect = [[Rectangle alloc] init];

BOOL solid = [myRect isFilled];

117

the compiler won’t complain, even though Rectangle overrides the method. At
run time, Rectangle’s version of the method will be performed.

Similarly, suppose that the Upper class declares a worry method that returns a
double,

and the Middle subclass of Upper overrides the method and declares a new
return type:

If an instance is statically typed to the Upper class, the compiler will think that
its worry method returns a double, and if an instance is typed to the Middle class,
it will think that worry returns an int. Errors will obviously result if a Middle
instance is typed to the Upper class. The compiler will inform the run-time
system that a worry message sent to the object will return a double, but at run time
it will actually return an int and generate an error.

Static typing can free identically named methods from the restriction that they
must have identical return and argument types, but it can do so reliably only if
the methods are declared in different branches of the class hierarchy.

Getting a Method Address
The only way to circumvent dynamic binding is to get the address of a method
and call it directly as if it were a function. This might be appropriate on the rare
occasions when a particular method will be performed many times in succession
and you want to avoid the overhead of messaging each time the method is
performed.

With a method defined in the NSObject class, methodForSelector:, you can ask for
a pointer to the procedure that implements a method, then use the pointer to
call the procedure. The pointer that methodForSelector: returns must be carefully
cast to the proper function type. Both return and argument types should be
included in the cast.

[myRect display];

- (double)worry;

- (int)worry;

Chapter 3 Objective-C Extensions

118

The example below shows how the procedure that implements the setFilled :
method might be called:

The first two arguments passed to the procedure are the receiving object (self)
and the method selector (_cmd). These arguments are hidden in method syntax
but must be made explicit when the method is called as a function.

Using methodForSelector: to circumvent dynamic binding saves most of the time
required by messaging. However, the savings will be significant only where a
particular message will be repeated many times, as in the for loop shown above.

Note that methodForSelector: is provided by the run-time system; it’s not a feature
of the Objective-C language itself.

Getting an Object Data Structure
A fundamental tenet of object-oriented programming is that the data structure
of an object is private to the object. Information stored there can be accessed
only through messages sent to the object. Although it is generally considered a
poor programming practice, there is a way to strip an object data structure of its
“objectness” and treat it like any other C structure. This makes all the object’s
instance variables publicly available.

When given a class name as an argument, the @defs() directive produces the
declaration list for an instance of the class. This list is useful only in declaring
structures, so @defs() can appear only in the body of a structure declaration. This
code, for example, declares a structure that would be identical to the template
for an instance of the Worker class:

Here public is declared as a pointer to a structure that’s essentially
indistinguishable from a Worker instance. With a little help from a type cast, a

void (*setter)(id, SEL, BOOL);
int i;

setter = (void (*)(id, SEL, BOOL))[target
 methodForSelector:@selector(setFilled:)];

for (i = 0; i < 1000, i++)
 setter(targetList[i], @selector(setFilled:), True);

struct workerDef {
 @defs(Worker)
} *public;

119

Worker id can be assigned to the pointer. The object’s instance variables can
then be accessed publicly through the pointer:

This technique of turning an object into a structure makes all of its instance
variables public, no matter whether they were declared @private, @protected, or
@public.

Objects generally aren’t designed with the expectation that they’ll be turned
into C structures. You may want to use @defs() for classes you define entirely
yourself, but it should not be applied to classes found in a framework or to
classes you define that inherit from framework classes.

Type Encoding

To assist the run-time system, the compiler encodes the return and argument
types for each method in a character string and associates the string with the
method selector. The coding scheme it uses might also be of use in other
contexts and so is made publicly available with the @encode() directive. When
given a type specification, @encode() returns a string encoding that type. The
type can be a basic type such as an int, a pointer, a tagged structure or union, or
a class name—anything, in fact, that can be used as an argument to the C sizeof()
operator.

The table below lists the type codes. Note that many of them overlap with the
codes you use when encoding an object for purposes of archiving or distribution.
However, there are codes listed here that you can’t use when writing a coder,
and there are codes that you may want to use when writing a coder that aren’t
generated by @encode(). (See the NSCoder class specification in the Foundation
Framework Reference for more information on encoding objects for archiving or
distribution.)

id aWorker;
aWorker = [[Worker alloc] init];

public = (struct workerDef *)aWorker;
public->boss = nil;

char *buf1 = @encode(int **);
char *buf2 = @encode(struct key);
char *buf3 = @encode(Rectangle);

Chapter 3 Objective-C Extensions

120

Code Meaning

c A char

i An int

s A short

l A long

q A long long

C An unsigned char

I An unsigned int

S An unsigned short

L An unsigned long

Q An unsigned long long

f A float

d A double

v A void

* A character string (char *)

@ An object (whether statically typed or typed id)

A class object (Class)

: A method selector (SEL)

[arity type] An array

{name=type...} A structure

(type...) A union

bnum A bit field of num bits

^type A pointer to type

? An unknown type (among other things, this code is used for function
pointers)

The type code for an array is enclosed within square brackets; the number of
elements in the array is specified immediately after the open bracket, before the
array type. For example, an array of 12 pointers to floats would be encoded as:

121

Structures are specified within braces, and unions within parentheses. The
structure tag is listed first, followed by an equal sign and the codes for the fields
of the structure listed in sequence. For example, this structure,

would be encoded like this:

The same encoding results whether the defined type name (Example) or the
structure tag (example) is passed to @encode(). The encoding for a structure
pointer carries the same amount of information about the structure’s fields:

However, another level of indirection removes the internal type specification:

Objects are treated like structures. For example, passing the NSObject class
name to @encode() yields this encoding:

The NSObject class declares just one instance variable, isa, of type Class.

[12^f]

typedef struct example {

 id anObject;

 char *aString;

 int anInt;

} Example;

{example=@*i}

^{example=@*i}

^^{example}

{NSObject=#}

Chapter 3 Objective-C Extensions

122

Note: Although the @encode() directive doesn’t return them, the run-time system
uses these additional encodings for type qualifiers when they’re used to declare
methods in a protocol:

Code Meaning

r const

n in

N inout

o out

O bycopy

R byref

V oneway

The Run-Time SystemChapter 4

125

The Objective-C language defers as many decisions as it can from compile time
and link time to run time. Whenever possible, it does things dynamically. This
means that the language requires not just a compiler, but also a run-time system
to execute the compiled code. The run-time system acts as a kind of operating
system for the Objective-C language; it’s what makes the language work.

Objective-C programs interact with the run-time system at three distinct levels:

Through Objective-C source code. For the most part, the run-time system
works automatically and behind the scenes. You use it just by writing and
compiling Objective-C source code.

It’s up to the compiler to produce the data structures that the run-time
system requires and to arrange the run-time function calls that carry out
language instructions. The data structures capture information found in class
and category definitions and in protocol declarations; they include the class
and protocol objects discussed earlier, as well as method selectors, instance
variable templates, and other information distilled from source code. The
principal run-time function is the one that sends messages, as described
under “How Messaging Works” in Chapter 2. It’s invoked by source-code
message expressions.

Through a method interface defined in the NSObject class. Every object
inherits from the NSObject class, so every object has access to the methods it
defines. Most NSObject methods interact with the run-time system.

Some of these methods simply query the system for information. The
preceding chapters, for example, mentioned the class method, which asks an
object to identify its class, isKindOfClass: and isMemberOfClass:, which test an
object’s position in the inheritance hierarchy, respondsToSelector:, which
checks whether an object can accept a particular message, conformsToProtocol:,
which checks whether it conforms to a protocol, and methodForSelector:, which
asks for the address of a method implementation. Methods like these give an
object the ability to introspect about itself.

Other methods set the run-time system in motion. For example,
performSelector: and its companions initiate messages, and alloc produces a new
object properly connected to its class.

All these methods were mentioned in previous chapters and are described in
detail in the NSObject class specification in the Foundation Framework
Reference.

Through direct calls to run-time functions. The run-time system has a public
interface, consisting mainly of a set of functions. Many are functions that

■

■

■

Chapter 4 The Run-Time System

126

duplicate what you get automatically by writing Objective-C code or what the
NSObject class provides with a method interface. Others manipulate low-
level run-time processes and data structures. These functions make it
possible to develop other interfaces to the run-time system and produce tools
that augment the development environment; they’re not needed when
programming in Objective-C.

However, a few of the run-time functions might on occasion be useful when
writing an Objective-C program. These functions—such as sel_getUid(), which
returns a method selector for a method name, and objc_msgSend(), which
sends a message to an object—are defined in the Objective-C run time
system described at various places in the text of this manual.

Because the NSObject class is at the root of all inheritance hierarchies, the
methods it defines are inherited by all classes. Its methods therefore establish
behaviors that are inherent to every instance and every class object. However, in
a few cases, the NSObject class merely defines a framework for how something
should be done; it doesn’t provide all the necessary code itself.

For example, the NSObject class defines a description method that should return
an NSString associated with the receiver. If you define a class of named objects,
you must implement a description method to return the specific character string
associated with the receiver. NSObject’s version of the method can’t know what
that name will be, so it merely returns the class name as a default.

This chapter looks at three areas where the NSObject class provides a
framework and defines conventions, but where you may need to write code to
fill in the details:

Allocating and initializing new instances of a class, and deallocating instances
when they’re no longer needed
Forwarding messages to another object
Dynamically loading new modules into a running program

Other conventions of the NSObject class are described in the NSObject class
specification in the Foundation Framework Reference.

Allocation and Initialization

It takes two steps to create an object in Objective-C. You must both:

Dynamically allocate memory for the new object, and
Initialize the newly allocated memory to appropriate values.

■

■

■

■

■

127

An object isn’t fully functional until both steps have been completed. As
discussed in Chapter 2, each step is accomplished by a separate method, but
typically in a single line of code:

Separating allocation from initialization gives you individual control over each
step so that each can be modified independently of the other. The following
sections look first at allocation and then at initialization, and discuss how they
are in fact controlled and modified.

Allocating Memory For Objects
In Objective-C, memory for new objects is allocated using class methods
defined in the NSObject class. NSObject defines two principal methods for this
purpose, alloc and allocWithZone:.

These methods allocate enough memory to hold all the instance variables for an
object belonging to the receiving class. They don’t need to be overridden and
modified in subclasses.

Initializing New Objects
The alloc and allocWithZone: methods initialize a new object’s isa instance variable
so that it points to the object’s class (the class object). All other instance variables
are set to 0. Usually, an object needs to be more specifically initialized before it
can be safely used.

This initialization is the responsibility of class-specific instance methods that, by
convention, begin with the abbreviation “init”. If the method takes no
arguments, the method name is just those four letters, init. If it takes arguments,
labels for the arguments follow the “init” prefix. For example, an NSView can
be initialized with an initWithFrame: method.

Every class that declares instance variables must provide an init... method to
initialize them. The NSObject class declares the isa variable and defines an init
method. However, since isa is initialized when memory for a new object is
allocated, all NSObject’s init method does is return self. NSObject declares the
method mainly to establish the naming convention described above.

id anObject = [[Rectangle alloc] init];

+ (id)alloc;
+ (id)allocWithZone:(NSZone *)zone;

Chapter 4 The Run-Time System

128

The Returned Object
An init... method normally initializes the instance variables of the receiver, then
returns it. It’s the responsibility of the method to return an object that can be
used without error.

However, in some cases, this responsibility can mean returning a different
object than the receiver. For example, if a class keeps a list of named objects, it
might provide an initWithName: method to initialize new instances. If there can be
no more than one object per name, initWithName: might refuse to assign the same
name to two objects. When asked to assign a new instance a name that’s already
being used by another object, it might free the newly allocated instance and
return the other object—thus ensuring the uniqueness of the name while at the
same time providing what was asked for, an instance with the requested name.

In a few cases, it might be impossible for an init... method to do what it’s asked to
do. For example, an initFromFile: method might get the data it needs from a file
passed as an argument. If the file name it’s passed doesn’t correspond to an
actual file, it won’t be able to complete the initialization. In such a case, the init...
method could free the receiver and return nil, indicating that the requested
object can’t be created.

Because an init... method might return an object other than the newly allocated
receiver, or even return nil, it’s important that programs use the value returned
by the initialization method, not just that returned by alloc or allocWithZone:. The
following code is very dangerous, since it ignores the return of init.

It’s recommended that you combine allocation and initialization messages:

If there’s a chance that the init... method might return nil, the return value should
be checked before proceeding:

id anObject = [SomeClass alloc];
[anObject init];
[anObject someOtherMessage];

id anObject = [[SomeClass alloc] init];
[anObject someOtherMessage];

129

Arguments
An init... method must ensure that all of an object’s instance variables have
reasonable values. This doesn’t mean that it needs to provide an argument for
each variable. It can set some to default values or depend on the fact that (except
for isa) all bits of memory allocated for a new object are set to 0. For example, if
a class requires its instances to have a name and a data source, it might provide
an initWithName:fromFile: method, but set nonessential instance variables to
arbitrary values or allow them to have the null values set by default. It could
then rely on methods like setEnabled:, setFriend:, and setDimensions: to modify
default values after the initialization phase had been completed.

Any init... method that takes arguments must be prepared to handle cases where
an inappropriate value is passed. One option is to substitute a default value, and
to let a null argument explicitly evoke the default.

Coordinating Classes
Every class that declares instance variables must provide an init... method to
initialize them (unless the variables require no initialization). The init... methods
the class defines initialize only those variables declared in the class. Inherited
instance variables are initialized by sending a message to super to perform an
initialization method defined somewhere farther up the inheritance hierarchy:

The message to super chains together initialization methods in all inherited
classes. Because it comes first, it ensures that superclass variables are initialized
before those declared in subclasses. For example, a Rectangle object must be
initialized as an NSObject, a Graphic, and a Shape before it’s initialized as a

id anObject = [[SomeClass alloc] init];
if (anObject)
 [anObject someOtherMessage];
else
 . . .

- initWithName:(char *)string
{
 if (self = [super init]) {
 name = (char *)NSZoneMalloc([self zone],

strlen(string) + 1);
 strcpy(name, string);
 return self;
 }
 return nil;
}

Chapter 4 The Run-Time System

130

Rectangle. (See Chapter 2 for a figure illustrating the Rectangle inheritance
hierarchy.)

The connection between the initWithName: method illustrated above and the
inherited init method it incorporates is diagrammed in the figure below:

A class must also make sure that all inherited initialization methods work. For
example, if class A defines an init method and its subclass B defines an
initWithName: method, as shown in the figure above, B must also make sure that
an init message will successfully initialize B instances. The easiest way to do that
is to replace the inherited init method with a version that invokes initWithName:.

The initWithName: method would, in turn, invoke the inherited method, as was
shown in the example and figure above. That figure can be modified to include
B’s version of init, as shown below:

Class B

Class A

– initWithName:

– init

- init
{
 return [self initWithName:"default"];
}

131

Covering inherited initialization methods makes the class you define more
portable to other applications. If you leave an inherited method uncovered,
someone else may use it to produce incorrectly initialized instances of your class.

The Designated Initializer
In the example above, initWithName: would be the designated initializer for its class
(class B). The designated initializer is the method in each class that guarantees
inherited instance variables are initialized (by sending a message to super to
perform an inherited method). It’s also the method that does most of the work,
and the one that other initialization methods in the same class invoke. It’s an
OPENSTEP convention that the designated initializer is always the method
that allows the most freedom to determine the character of a new instance (the
one with the most arguments).

It’s important to know the designated initializer when defining a subclass. For
example, suppose we define class C, a subclass of B, and implement an
initWithName:fromFile: method. In addition to this method, we have to make sure
that the inherited init and initWithName: methods also work for instances of C.
This can be done just by covering B’s initWithName: with a version that invokes
initWithName:fromFile:.

Class B

Class A

– init

– init

– initWithName:

Chapter 4 The Run-Time System

132

For an instance of the C class, the inherited init method will invoke this new
version of initWithName: which will invoke initWithName:fromFile:. The relationship
between these methods is diagrammed below.

This figure omits an important detail. The initWithName:fromFile: method, being
the designated initializer for the C class, will send a message to super to invoke
an inherited initialization method. But which of B’s methods should it invoke,
init or initWithName:? It can’t invoke init, for two reasons:

Circularity would result (init invokes C’s initWithName:, which invokes
initWithName:fromFile:, which invokes init again).

It won’t be able to take advantage of the initialization code in B’s version of
initWithName:.

Therefore, initWithName:fromFile: must invoke initWithName:.

- initWithName:(char *)string
{
 return [self initWithName:string fromFile:NULL];
}

– initWithName:fromFile:

– initWithName:

Class B – initWithName:

– init

Class C

■

■

133

The general principle is this:

The designated initializer in one class must, through a message to super, invoke the
designated initializer in an inherited class.

Designated initializers are chained to each other through messages to super,
while other initialization methods are chained to designated initializers through
messages to self.

The figure below shows how all the initialization methods in classes A, B, and C
are linked. Messages to self are shown on the left and messages to super are
shown on the right.

- initWithName:(char *)string fromFile:(char *)pathname
{
 if (self = [super initWithName:string])
 . . .
}

Chapter 4 The Run-Time System

134

Note that B’s version of init sends a message to self to invoke the initWithName:
method. Therefore, when the receiver is an instance of the B class, it will invoke
B’s version of initWithName:, and when the receiver is an instance of the C class, it
will invoke C’s version.

Combining Allocation and Initialization
By convention, in OPENSTEP classes define creation methods that combine
the two steps of allocating and initializing to return new, initialized instances of
the class. These methods typically take the form + className... where className
is the name of the class. For instance, NSString has the following methods
(among others):

– initWithName:fromFile:

– initWithName:

Class B

Class A

– init

– init

Class C

– initWithName:

135

Similarly, NSArray defines the following class methods that combine allocation
and initialization:

Instances created with any of these methods will be deallocated automatically,
so you don’t have to release them unless you first retain them.

Methods that combine allocation and initialization are particularly valuable if
the allocation must somehow be informed by the initialization. For example, if
the data for the initialization is taken from a file, and the file might contain
enough data to initialize more than one object, it would be impossible to know
how many objects to allocate until the file is opened. In this case, you might
implement a listFromFile: method that takes the name of the file as an argument.
It would open the file, see how many objects to allocate, and create a List object
large enough to hold all the new objects. It would then allocate and initialize the
objects from data in the file, put them in the List, and finally return the List.

It also makes sense to combine allocation and initialization in a single method if
you want to avoid the step of blindly allocating memory for a new object that you
might not use. As mentioned under “The Returned Object” above, an init...
method might sometimes substitute another object for the receiver. For
example, when initWithName: is passed a name that’s already taken, it might free
the receiver and in its place return the object that was previously assigned the
name. This means, of course, that an object is allocated and freed immediately
without ever being used.

If the code that checks whether the receiver should be initialized is placed
inside the method that does the allocation instead of inside init..., you can avoid
the step of allocating a new instance when one isn’t needed.

In the following example, the soloist method ensures that there’s no more than
one instance of the Soloist class. It allocates and initializes an instance only once:

+ (NSString *)stringWithCString:(const char *)bytes;

+ (NSString *)stringWithFormat:(NSString *)format, ...;

+ (id)array;

+ (id)arrayWithObject:(id)anObject;

+ (id)arrayWithObjects:(id)firstObj, ...;

Chapter 4 The Run-Time System

136

Deallocation
The NSObject class defines a dealloc method that relinquishes the memory that
was originally allocated for an object. You rarely invoke dealloc directly, however,
because OPENSTEP provides a mechanism for the automatic disposal of
objects (which makes use of dealloc). For more information on this automatic
object disposal mechanism, see the introduction to the Foundation Framework
Reference.

The purpose of a dealloc message is to deallocate all the memory occupied by the
receiver. NSObject’s version of the method deallocates the receiver’s instance
variables, but doesn’t follow any variable that points to other memory. If the
receiver allocated any additional memory—to store a character string or an array
of structures, for example—that memory must also be deallocated (unless it’s
shared by other objects). Similarly, if the receiver is served by another object
that would be rendered useless in its absence, that object must also be
deallocated.

Therefore, it’s necessary for subclasses to override NSObject’s version of dealloc
and implement a version that deallocates all of the other memory the object
occupies. Every class that has its objects allocate additional memory must have
its own dealloc method. Each version of dealloc ends with a message to super to
perform an inherited version of the method, as illustrated in the following
example:

By working its way up the inheritance hierarchy, every dealloc message
eventually invokes NSObject’s version of the of the method.

+ soloist
{
 static Soloist *instance = nil;

 if (instance == nil)
 instance = [[self alloc] init];
 return instance;
}

- dealloc {

 [companion release];

 free(privateMemory);

 vm_deallocate(task_self(), sharedMemory, memorySize);

 [super dealloc];

}

137

Forwarding

It’s an error to send a message to an object that can’t respond to it. However,
before announcing the error, the run-time system gives the receiving object a
second chance to handle the message. It sends the object a forwardInvocation:
message with an NSInvocation object as its sole argument—the NSInvocation
object encapsulates the original message and the arguments that were passed
with it.

You can implement a forwardInvocation: method to give a default response to the
message, or to avoid the error in some other way. As its name implies,
forwardInvocation: is commonly used to forward the message to another object.

To see the scope and intent of forwarding, imagine the following scenarios:
Suppose, first, that you’re designing an object that can respond to a negotiate
message, and you want its response to include the response of another kind of
object. You could accomplish this easily by passing a negotiate message to the
other object somewhere in the body of the negotiate method you implement.

Take this a step further, and suppose that you want your object’s response to a
negotiate message to be exactly the response implemented in another class. One
way to accomplish this would be to make your class inherit the method from the
other class. However, it might not be possible to arrange things this way. There
may be good reasons why your class and the class that implements negotiate are
in different branches of the inheritance hierarchy.

Even if your class can’t inherit the negotiate method, you can still “borrow” it by
implementing a version of the method that simply passes the message on to an
instance of the other class:

This way of doing things could get a little cumbersome, especially if there were
a number of messages you wanted your object to pass on to the other object.
You’d have to implement one method to cover each method you wanted to
borrow from the other class. Moreover, it would be impossible to handle cases
where you didn’t know, at the time you wrote the code, the full set of messages
that you might want to forward. That set might depend on events at run time,
and it might change as new methods and classes are implemented in the future.

- negotiate
{
 if ([someOtherObject respondsTo:@selector(negotiate)])
 return [someOtherObject negotiate];
 return self;
}

Chapter 4 The Run-Time System

138

The second chance offered by a forwardInvocation: message provides a less ad hoc
solution to this problem, and one that’s dynamic rather than static. It works like
this: When an object can’t respond to a message because it doesn’t have a
method matching the selector in the message, the run-time system informs the
object by sending it a forwardInvocation: message. Every object inherits a
forwardInvocation: method from the NSObject class. However, NSObject’s version
of the method simply invokes doesNotRecognizeSelector: due to the unrecognized
message. By overriding NSObject’s version and implementing your own, you
can take advantage of the opportunity that the forwardInvocation: message
provides to forward messages to other objects.

To forward a message, all a forwardInvocation: method needs to do is:

Determine where the message should go, and
Send it there with its original arguments.

The message can be sent with the invokeWithTarget: method:

The return value of the message that’s forwarded is returned to the original
sender. All types of return values can be delivered to the sender, including ids,
structures, and double-precision floating point numbers.

A forwardInvocation: method can act as a distribution center for unrecognized
messages, parceling them out to different receivers. Or it can be a transfer
station, sending all messages to the same destination. It can translate one
message into another, or simply “swallow” some messages so there’s no
response and no error. A forwardInvocation: method can also consolidate several
messages into a single response. What forwardInvocation: does is up to the
implementor. However, the opportunity it provides for linking objects in a
forwarding chain opens up possibilities for program design.

Note: The forwardInvocation: method gets to handle messages only if they don’t
invoke an existing method in the nominal receiver. If, for example, you want
your object to forward negotiate messages to another object, it can’t have a
negotiate method of its own. If it does, the message will never reach
forwardInvocation:.

■

■

- (void)forwardInvocation:(NSInvocation *)anInvocation
{
 if ([someOtherObject respondsToSelector:

[anInvocation selector]])
[anInvocation invokeWithTarget:someOtherObject];

 else
 [self doesNotRecognizeSelector:[anInvocation selector]];
}

139

For more information on forwarding and invocations, see the NSInvocation class
specification in the Foundation Framework Reference.

Forwarding and Multiple Inheritance
Forwarding mimics inheritance, and can be used to lend some of the effects of
multiple inheritance to Objective-C programs. As shown in the figure below, an
object that responds to a message by forwarding it appears to borrow or “inherit”
a method implementation defined in another class.

In this illustration, an instance of the Warrior class forwards a negotiate message
to an instance of the Diplomat class. The Warrior will appear to negotiate like a
Diplomat. It will seem to respond to the negotiate message, and for all practical
purposes it does respond (although it’s really a Diplomat that’s doing the work).

The object that forwards a message thus “inherits” methods from two branches
of the inheritance hierarchy—its own branch and that of the object that
responds to the message. In the example above, it will appear as if the Warrior
class inherits from Diplomat as well as its own superclass.

Forwarding addresses most needs that lead programmers to value multiple
inheritance. However, there’s an important difference between the two:
Multiple inheritance combines different capabilities in a single object. It tends
toward large, multifaceted objects. Forwarding, on the other hand, assigns
separate responsibilities to separate objects. It decomposes problems into
smaller objects, but associates those objects in a way that’s transparent to the
message sender.

isa isa

– forwardInvocation: – negotiate

negotiate . . .

. . .

DiplomatWarrior

Chapter 4 The Run-Time System

140

Surrogate Objects
Forwarding not only mimics multiple inheritance, it also makes it possible to
develop lightweight objects that represent or “cover” more substantial objects.
The surrogate stands in for the other object and funnels messages to it.

The proxy discussed under “Remote Messaging” in Chapter 3 is such an object.
A proxy takes care of the administrative details of forwarding messages to a
remote receiver, making sure argument values are copied and retrieved across
the connection, and so on. But it doesn’t attempt to do much else; it doesn’t
duplicate the functionality of the remote object but simply gives the remote
object a local address, a place where it can receive messages in another
application.

Other kinds of surrogate objects are also possible. Suppose, for example, that
you have an object that manipulates a lot of data—perhaps it creates a
complicated image or reads the contents of a file on disk. Setting this object up
could be time-consuming, so you prefer to do it lazily—when it’s really needed
or when system resources are temporarily idle. At the same time, you need at
least a placeholder for this object in order for the other objects in the application
to function properly.

In this circumstance, you could initially create, not the full-fledged object, but a
lightweight surrogate for it. This object could do some things on its own, such
as answer questions about the data, but mostly it would just hold a place for the
larger object and, when the time came, forward messages to it. When the
surrogate’s forwardInvocation: method first receives a message destined for the
other object, it would check to be sure that the object existed and would create
it if it didn’t All messages for the larger object go through the surrogate, so as far
as the rest of the program is concerned, the surrogate and the larger object would
be the same.

Making Forwarding Transparent
Although forwarding mimics inheritance, the NSObject class never confuses
the two. Methods like respondsToSelector: and isKindOfClass: look only at the
inheritance hierarchy, never at the forwarding chain. If, for example, a Warrior
object is asked whether it responds to a negotiate message,

if ([aWarrior respondsToSelector:@selector(negotiate)])
 . . .

141

the answer will be NO, even though it can receive negotiate messages without
error and respond to them, in a sense, by forwarding them to a Diplomat. (See
the previous figure.)

In many cases, NO is the right answer. But it may not be. If you use forwarding
to set up a surrogate object or to extend the capabilities of a class, the forwarding
mechanism should probably be as transparent as inheritance. If you want your
objects to act as if they truly inherited the behavior of the objects they forward
messages to, you’ll need to re-implement the respondsToSelector: and isKindOfClass:
methods to include your forwarding algorithm:

In addition to respondsToSelector: and isKindOfClass:, the instancesRespondToSelector:
method should also mirror the forwarding algorithm. This method rounds out
the set. If protocols are used, the conformsToProtocol: method should likewise be
added to the list. Similarly, if an object forwards any remote messages it receives,
it should have a version of methodSignatureForSelector: that can return accurate
descriptions of the methods that ultimately respond to the forwarded messages.

You might consider putting the forwarding algorithm somewhere in private code
and have all these methods, forwardInvocation: included, call it.

Note: The methods mentioned above are described in the NSObject class
specification in the Foundation Framework Reference. For information on
invokeWithTarget:, see the NSInvocation class specification in the Foundation
Framework Reference.

Dynamic Loading

An Objective-C program can load and link new classes and categories while it’s
running. The new code is incorporated into the program and treated identically
to classes and categories loaded at the start.

- (BOOL)respondsToSelector:(SEL)aSelector
{
 if ([super respondsToSelector:aSelector])
 return YES;
 else {
 /* Here, test whether the aSelector message can *
 * be forwarded to another object and whether that *
 * object can respond to it. Return YES if it can. */
 }
 return NO;
}

Chapter 4 The Run-Time System

142

Dynamic loading can be used to do a lot of different things. For example, device
drivers are dynamically loaded into the kernel. Adaptors for database servers are
dynamically loaded by the Enterprise Objects Framework.

In the OpenStep environment, dynamic loading is commonly used to allow
applications to be customized. Others can write modules that your program will
load at run time—much as Interface Builder loads custom palettes,
OPENSTEP for Mach’s Preferences application loads custom displays, and its
Workspace Manager loads data inspectors. The loadable modules extend what
your application can do. They contribute to it in ways that you permit, but could
not have anticipated or defined yourself. You provide the framework, but others
provide the code.

Although there are run-time functions that enable dynamic loading
(objc_loadModules() and objc_unloadModules(), defined in objc/objc-load.h),
OPENSTEP’s NSBundle class provides a significantly more convenient
interface for dynamic loading—one that’s object-oriented and integrated with
related services. See the NSBundle class specification in the Foundation
Framework Reference for information on the NSBundle class and its use.

Objective-C Language SummaryAppendix A

145

Objective-C adds a small number of constructs to the C language and defines a
handful of conventions for effectively interacting with the run-time system.
This appendix lists all the additions to the language, but doesn’t go into great
detail. For more information, see Chapter 2 and Chapter 3 of this manual. For a
more formal presentation of Objective-C syntax, see Appendix B, “Reference
Manual for the Objective-C Language,” which follows this summary.

Messages

Message expressions are enclosed in square brackets:

The receiver can be:

A variable or expression that evaluates to an object (including the variable self)
A class name (indicating the class object)
super (indicating an alternative search for the method implementation)

The message is the name of a method plus any arguments passed to it.

Defined Types

The principal types used in Objective-C are defined in objc/objc.h. They are:

Type Definition

id An object (a pointer to its data structure)

Class A class object (a pointer to the class data structure)

SEL A selector, a compiler-assigned code that identifies a method name

IMP A pointer to a method implementation that returns an id

BOOL A boolean value, either YES or NO

[receiver message]

■

■

■

Appendix A Objective-C Language Summary

146

id can be used to type any kind of object, class, or instance. In addition, class
names can be used as type names to statically type instances of a class. A
statically typed instance is declared to be a pointer to its class or to any class it
inherits from.

The objc.h header file also defines these useful terms:

Term Definition

nil A null object pointer, (id)0

Nil A null class pointer, (Class)0

Preprocessor Directives

The preprocessor understands these new notations:

Notation Definition

#import Imports a header file. This directive is identical to #include, except
that it won’t include the same file more than once.

// Begins a comment that continues to the end of the line.

Compiler Directives

Directives to the compiler begin with “@”. The following directives are used to
declare and define classes, categories, and protocols:

147

Directive Definition

@interface Begins the declaration of a class or category interface

@implementation Begins the definition of a class or category

@protocol Begins the declaration of a formal protocol

@end Ends the declaration/definition of a class, category, or protocol

The following mutually-exclusive directives specify the visibility of instance
variables:

Directive Definition

@private Limits the scope of an instance variable to the class that declares it

@protected Limits instance variable scope to declaring and inheriting classes

@public Removes restrictions on the scope of instance variables

The default is @protected.

In addition, there are directives for these particular purposes:

Directive Definition

@class Declares the names of classes defined elsewhere

@selector(method) Returns the compiled selector that identifies method

@protocol(name) Returns the name protocol (an instance of the Protocol class)

@encode(spec) Yields a character string that encodes the type structure of spec

@defs(classname) Yields the internal data structure of classname instances

Appendix A Objective-C Language Summary

148

Classes

A new class is declared with the @interface directive. It imports the interface file
for its superclass:

Everything but the compiler directives and class name is optional. If the colon
and superclass name are omitted, the class is declared to be a new root class. If
any protocols are listed, the header files where they’re declared must also be
imported.

A class definition imports its own interface:

Categories

A category is declared in much the same way as a class. It imports the interface
file that declares the class:

The protocol list and method declarations are optional. If any protocols are
listed, the header files where they’re declared must also be imported.

#import " ItsSuperclass .h"

@interface ClassName : ItsSuperclass < protocol list >
{

instance variable declarations
}
method declarations
@end

#import " ClassName .h"

@implementation ClassName
method definitions
@end

#import " ClassName .h"

@interface ClassName (CategoryName) < protocol list >
method declarations
@end

149

Like a class definition, a category definition imports its own interface:

Formal Protocols

Formal protocols are declared using the @protocol directive:

The list of incorporated protocols and the method declarations are optional.
The protocol must import the header files that declare any protocols it
incorporates.

Within source code, protocols are referred to using the similar @protocol()
directive, where the parentheses enclose the protocol name.

Protocol names listed within angle brackets (<...>) are used to do three different
things:

In a protocol declaration, to incorporate other protocols (as shown above)
In a class or category declaration, to adopt the protocol (as shown under
“Classes” and “Categories” above)
In a type specification, to limit the type to objects that conform to the protocol

Within protocol declarations, these type qualifiers support remote messaging:

#import " CategoryName .h"

@implementation ClassName (CategoryName)
method definitions
@end

@protocol ProtocolName < protocol list >
method declarations
@end

■

■

■

Appendix A Objective-C Language Summary

150

Type Qualifier Definition

oneway The method is for asynchronous messages and has no valid return.

in The argument passes information to the remote receiver.

out The argument gets information returned by reference.

inout The argument both passes information and gets information.

bycopy A copy of the object, not a proxy, should be passed or returned.

byref A reference to the object, not a copy, should be passed or returned.

Method Declarations

The following conventions are used in method declarations:

A “+” precedes declarations of class methods.

A “−” precedes declarations of instance methods.

Arguments are declared after colons (:). Typically, a label describing the
argument precedes the colon. Both labels and colons are considered part of
the method name.

Argument and return types are declared using the C syntax for type casting.

The default return and argument type for methods is id, not int as it is for
functions. (However, the modifier unsigned when used without a following
type always means unsigned int)

Method Implementations

Each method implementation is passed two hidden arguments:

The receiving object (self)
The selector for the method (_cmd)

Within the implementation, both self and super refer to the receiving object.
super replaces self as the receiver of a message to indicate that only methods
inherited by the implementation should be performed in response to the
message.

■

■

■

■

■

■

■

151

Methods with no other valid return typically return void.

Naming Conventions

The names of files that contain Objective-C source code have a “.m” extension.
Files that declare class and category interfaces or that declare protocols have the
“.h” extension typical of header files.

Class, category, and protocol names generally begin with an uppercase letter; the
names of methods and instance variables typically begin with a lowercase letter.
The names of variables that hold instances usually also begin with lowercase
letters.

In Objective-C, identical names that serve different purposes don’t clash.
Within a class, names can be freely assigned:

A class can declare methods with the same names as methods in other classes.
A class can declare instance variables with the same names as variables in
other classes.
An instance method can have the same name as a class method.
A method can have the same name as an instance variable.

Likewise, protocols and categories of the same class have protected name
spaces:

A protocol can have the same name as a class, a category, or anything else.
A category of one class can have the same name as a category of another class.

However, class names are in the same name space as variables and defined
types. A program can’t have a global variable with the same name as a class.

■

■

■

■

■

■

Appendix A Objective-C Language Summary

152

Reference Manual for the Objective-C
Language

Appendix B

155

This appendix presents a formal grammar for the Objective-C extensions to the
C language—as the Objective-C language is implemented for the OPENSTEP
development environment. It adds to the grammar for ANSI standard C found
in Appendix A of The C Programming Language (second edition, 1988) by Brian
W. Kernighan and Dennis M. Ritchie, published by Prentice Hall, and should
be read in conjunction with that book.

The Objective-C extensions introduce some new symbols (such as class-
interface), but also make use of symbols (such as function-definition) that are
explained in the standard C grammar. The symbols mentioned but not
explained here are listed below:

Of these, identifier and string are undefined terminal symbols. Objective-C adds
no undefined terminal symbols of its own.

Two notational conventions used here differ from those used in The C
Programming Language:

Literal symbols are shown in bold type.

Brackets enclose optional elements and are in italic type. Literal brackets, like
other literal symbols, are non-italic and bold.

Otherwise, this appendix follows the conventions of the C reference manual.
Each part of the grammar consists of a symbol followed by a colon and an
indented list of mutually-exclusive possibilities for expanding the symbol. For
example:

receiver:
expression

Undefined Symbols

compound statement

constant

declaration

declaration-list

enum-specifier

expression

function-definition

identifier

parameter-type-list

string

struct-declaration-list

struct-or-union

typedef-name

type-name

■

■

Appendix B Reference Manual for the Objective C Language

156

class-name
super

However, there is an exception: Even though they’re not mutually exclusive,
the constituents of classes, categories, and protocols are listed on separate lines
to clearly show the ordering of elements. For example:

protocol-declaration:
@protocol protocol-name
[protocol-reference-list]
[interface-declaration-list]
@end

This exception to the general rule is easily recognized since each list terminates
with @end.

There are just four entry points where the Objective-C language modifies the
rules defined for standard C:

External declarations
Type specifiers
Type qualifiers
Primary expressions

This appendix is therefore divided into four sections corresponding to these
points. Where a rule in the standard C grammar is modified by an Objective-C
extension, the entire rule is repeated in its modified form.

External Declarations

external-declaration:
function-definition
declaration
class-interface
class-implementation
category-interface
category-implementation
protocol-declaration
class-declaration-list

class-interface:
@interface class-name [: superclass-name]
[protocol-reference-list]

■

■

■

■

157

[instance-variables]
[interface-declaration-list]
@end

class-implementation:
@implementation class-name [: superclass-name]
[instance-variables]
[implementation-definition-list]
@end

category-interface:
@interface class-name (category-name)
[protocol-reference-list]
[interface-declaration-list]
@end

category-implementation:
@implementation class-name (category-name)
[implementation-definition-list]
@end

protocol-declaration:
@protocol protocol-name
[protocol-reference-list]
[interface-declaration-list]
@end

class-declaration-list:
@class class-list ;

class-list:
class-name
class-list , class-name

protocol-reference-list:
< protocol-list >

protocol-list:
protocol-name
protocol-list , protocol-name

class-name:
identifier

superclass-name:
identifier

Appendix B Reference Manual for the Objective C Language

158

category-name:
identifier

protocol-name:
identifier

instance-variables:
{ [visibility-specification] struct-declaration-list [instance-variables] }

visibility-specification:
@private
@protected
@public

interface-declaration-list:
declaration
method-declaration
interface-declaration-list declaration
interface-declaration-list method-declaration

method-declaration:
class-method-declaration
instance-method-declaration

class-method-declaration:
+ [method-type] method-selector ;

instance-method-declaration:
– [method-type] method-selector ;

implementation-definition-list:
function-definition
declaration
method-definition
implementation-definition-list function-definition
implementation-definition-list declaration
implementation-definition-list method-definition

method-definition:
class-method-definition
instance-method-definition

class-method-definition:
+ [method-type] method-selector [declaration-list] compound-statement

159

instance-method-definition:
– [method-type] method-selector [declaration-list] compound-statement

method-selector:
unary-selector
keyword-selector [, ...]
keyword-selector [, parameter-type-list]

unary-selector:
selector

keyword-selector:
keyword-declarator
keyword-selector keyword-declarator

keyword-declarator:
: [method-type] identifier
selector : [method-type] identifier

selector:
identifier

method-type:
(type-name)

Type Specifiers

type-specifier:
void
char
short
int
long
float
double
signed
unsigned
id [protocol-reference-list]
class-name [protocol-reference-list]
struct-or-union-specifier
enum-specifier
typedef-name

Appendix B Reference Manual for the Objective C Language

160

struct-or-union-specifier:
struct-or-union [identifier] { struct-declaration-list }
struct-or-union [identifier] { @defs (class-name) }
struct-or-union identifier

Type Qualifiers

type-qualifier:
const
volatile
protocol-qualifier

protocol-qualifier:
in
out
inout
bycopy
byref
oneway

Primary Expressions

primary-expression:
identifier
constant
string
(expression)
self
message-expression
selector-expression
protocol-expression
encode-expression

message-expression:
[receiver message-selector]

receiver:
expression
class-name
super

161

message-selector:
selector
keyword-argument-list

keyword-argument-list:
keyword-argument
keyword-argument-list keyword-argument

keyword-argument:
selector : expression
: expression

selector-expression:
@selector (selector-name)

selector-name:
selector
keyword-name-list

keyword-name-list:
keyword-name
keyword-name-list keyword-name

keyword-name:
selector :
:

protocol-expression:
@protocol (protocol-name)

encode-expression:
@encode (type-name)

Appendix B Reference Manual for the Objective C Language

162

Glossary

Reference

164

abstract class A class that’s defined solely so that other
classes can inherit from it. Programs don’t use
instances of an abstract class, only of its subclasses.

abstract superclass Same as abstract class.

action message In the Application Kit, a message sent by
an object (such as an NSButton or NSSlider) in
response to a user action (such as clicking the button or
dragging the slider’s knob). The message translates the
user’s action into a specific instruction for the
application. See also target.

active application The application associated with
keyboard events, the one the user is currently working
in. On Mach, menus are visible on-screen only for the
active application, and only the active application can
have the current key window.

adopt In the Objective-C language, a class is said to
adopt a protocol if it declares that it implements all the
methods in the protocol. Protocols are adopted by
listing their names between angle brackets in a class or
category declaration.

anonymous object An object of unknown class. The
interface to an anonymous object is published through
a protocol declaration.

Application Kit The Objective-C classes and C functions
available for implementing the window-based user
interface in an application. The Application Kit
provides a basic program structure for applications that
draw on the screen and respond to events. The
Application Kit is packaged as a framework.

archiving The process of preserving a data structure,
especially an object, for later use. An archived data
structure is usually stored in a file, but it can also be
written to memory, copied to the pasteboard, or sent to
another application. In OpenStep, archiving involves
writing data to an NSData object.

asynchronous message A remote message that returns
immediately, without waiting for the application that
receives the message to respond. The sending
application and the receiving application act
independently, and are therefore not “in sync.” See
also synchronous message.

category In the Objective-C language, a set of method
definitions that is segregated from the rest of the class
definition. Categories can be used to split a class
definition into parts or to add methods to an existing
class.

class In the Objective-C language, a prototype for a
particular kind of object. A class definition declares
instance variables and defines methods for all
members of the class. Objects that have the same types
of instance variables and have access to the same
methods belong to the same class. See also class object.

class method In the Objective-C language, a method
that can be used by the class object rather than by
instances of the class.

class object In the Objective-C language, an object that
represents a class and knows how to create new
instances of the class. Class objects are created by the
compiler, lack instance variables, and can’t be statically
typed, but otherwise behave like all other objects. As
the receiver in a message expression, a class object is
represented by the class name.

compile time The time when source code is compiled.
Decisions made at compile time are constrained by the
amount and kind of information encoded in source
files.

conform In the Objective-C language, a class is said to
conform to a protocol if it adopts the protocol or
inherits from a class that adopts it. An instance
conforms to a protocol if its class does. Thus, an
instance that conforms to a protocol can perform any of
the instance methods declared in the protocol.

content view In the Application Kit, the NSView
object that’s associated with the content area of a
window—all the area in the window excluding the title
bar, resize bar, and border. All other NSViews in the
window are arranged in a hierarchy beneath the
content view.

controls Graphical objects—such as buttons, sliders,
text fields, and scrollers—that the user can operate to
give instructions to an application.

cursor The small image (usually an arrow) that moves
on the screen and is controlled by moving the mouse.

165

delegate An object that acts on behalf of another object.

designated initializer The init... method that has primary
responsibility for initializing new instances of a class.
Each class defines or inherits its own designated
initializer. Through messages to self, other init...
methods in the same class directly or indirectly invoke
the designated initializer, and the designated
initializer, through a message to super, invokes the
designated initializer of its superclass.

dynamic binding Binding a method to a message—that is,
finding the method implementation to invoke in
response to the message—at run time, rather than at
compile time.

dynamic typing Discovering the class of an object at run
time rather than at compile time.

event The direct or indirect report of external activity,
especially user activity on the keyboard and mouse.

event message In the Application Kit, a message to
perform a method named after an event or sub-event.
Event messages are used to dispatch events to the
objects that will respond to them. See also action
message.

factory Same as class object.

factory method Same as class method.

factory object Same as class object.

file package A directory that is presented as a file,
allowing the user to manipulate a group of files as if
they were one file. A file package for an application
executable has the same name as the executable file,
plus a “.app” extension. File packages for documents
and bundles bear an extension that’s recognized as
belonging to a particular application.

formal protocol In the Objective-C language, a protocol
that’s declared with the @protocol directive. Classes can
adopt formal protocols, objects can respond at run time
when asked if they conform to a formal protocol, and
instances can be typed by the formal protocols they
conform to.

framework A way to package a logically-related set of
classes, protocols and functions together with localized
strings, on-line documentation, and other pertinent

files. OPENSTEP provides the Foundation
framework and the Application Kit framework, among
others. Frameworks are sometimes referred to as
“kits.”

id In the Objective-C language, the general type for
any kind of object regardless of class. id is defined as a
pointer to an object data structure. It can be used for
both class objects and instances of a class.

informal protocol In the Objective-C language, a protocol
declared as a category, usually as a category of
the NSObject class. The language gives explicit
support to formal protocols, but not to informal ones.

inheritance In object-oriented programming, the ability
of a superclass to pass its characteristics (methods and
instance variables) on to its subclasses.

inheritance hierarchy In object-oriented programming,
the hierarchy of classes that’s defined by the
arrangement of superclasses and subclasses. Every
class (except root classes such as NSObject) has a
superclass, and any class may have an unlimited
number of subclasses. Through its superclass, each
class inherits from those above it in the hierarchy.

instance In the Objective-C language, an object that
belongs to (is a member of) a particular class. Instances
are created at run time according to the specification in
the class definition.

instance method In the Objective-C language, any
method that can be used by an instance of a class rather
than by the class object.

instance variable In the Objective-C language, any
variable that’s part of the internal data structure of an
instance. Instance variables are declared in a class
definition and become part of all objects that are
members of or inherit from the class.

Interface Builder A tool that lets you graphically specify
your application’s user interface. It sets up the
corresponding objects for you and makes it easy for you
to establish connections between these objects and
your own code where needed.

introspection The ability of an object to reveal
information about itself as an object—such as its class

Reference

166

and superclass, the messages it can respond to, and the
protocols it conforms to.

key window The window in the active application that
receives keyboard events and is the focus of user
activity.

link time The time when files compiled from different
source modules are linked into a single program.
Decisions made by the linker are constrained by the
compiled code and ultimately by the information
contained in source code.

localize To adapt an application to work under various
local conditions—especially to have it use a language
selected by the user. Localization entails freeing
application code from language-specific and culture-
specific references and making it able to import
localized resources (such as character strings, images,
and sounds). For example, an application localized in
Spanish would display “Salir” as the last item in the
main menu. In Italian, it would be “Esci,” in German
“Verlassen,” and in English “Quit.”

main event loop The principal control loop for
applications that are driven by events. From the time
it’s launched until the moment it’s terminated, an
application gets one keyboard or mouse event after
another from the Window Server and responds to
them, waiting between events if the next event isn’t
ready. In the Application Kit, the NSApplication
object runs the main event loop.

menu A small window that displays a list of commands.
Only menus for the active application are visible on-
screen.

message In object-oriented programming, the method
selector (name) and accompanying arguments that tell
the receiving object in a message expression what to
do.

message expression In object-oriented programming, an
expression that sends a message to an object. In the
Objective-C language, message expressions are
enclosed within square brackets and consist of a
receiver followed by a message (method selector and
arguments).

method In object-oriented programming, a procedure
that can be executed by an object.

modal event loop A temporary event loop that’s set up to
get events directly from the event queue, bypassing
the main event loop. Typically, a mouse-down event
initiates the modal loop and the following mouse-up
event ends it. The loop gets mouse-dragged events (or
mouse-entered and mouse-exited events) to track the
cursor’s movement while the user holds the mouse
button down.

multiple inheritance In object-oriented programming, the
ability of a class to have more than one superclass—to
inherit from different sources and thus combine
separately-defined behaviors in a single class.
Objective-C doesn’t support multiple inheritance.

name space A logical subdivision of a program within
which all names must be unique. Symbols in one name
space won’t conflict with identically named symbols in
another name space. For example, in Objective-C, the
instance methods of each class are in a separate name
space, as are the class methods and instance variables

OPENSTEP A set of frameworks, including Foundation
and the Application Kit. NeXT also includes an
application development and user environment,
consisting of the Workspace Manager, the Window
Server, Project Builder and Interface Builder, and
other software.

nib file A file (actually a file package) that stores the
specifications for all or part of an application’s interface.
Nib files are created using Interface Builder and can
contain archived objects, information about
connections between objects, and sound and image
data.

nil In the Objective-C language, an object id with a
value of 0.

object A programming unit that groups together a data
structure (instance variables) and the operations
(methods) that can use or affect that data. Objects are
the principal building blocks of object-oriented
programs.

outlet An instance variable that points to another object.
Outlet instance variables are a way for an object to
keep track of the other objects to which it may need to
send messages.

167

panel A window that holds objects that control what
happens in other windows (such as a Font panel) or in
the application generally (such as a Preferences panel),
or a window that presents information about the
application to the user (such as an information panel).
See also attention panel.

polymorphism In object-oriented programming, the
ability of different objects to respond, each in its own
way, to the same message.

pop-up list A menu-like list of items that appears over
(or next to) an on-screen button when the button is
pressed. The user can choose an item by dragging to it
and releasing the mouse button. When the mouse
button is released, the pop-up list disappears.

procedural programming language A language, like C, that
organizes a program as a set of procedures that have
definite beginnings and ends.

protocol In the Objective-C language, the declaration of
a group of methods not associated with any particular
class. See also formal protocol and informal protocol.

receiver In object-oriented programming, the object
that is sent a message.

remote message A message sent from one application to
an object in another application.

remote object An object in another application, one
that’s a potential receiver for a remote message.

run time The time after a program is launched and while
it’s running. Decisions made at run time can be
influenced by choices the user makes.

selector In the Objective-C language, the name of a
method when it’s used in a source-code message to an
object, or the unique identifier that replaces the name
when the source code is compiled. Compiled selectors
are of type SEL.

static typing In the Objective-C language, giving the
compiler information about what kind of object an
instance is, by typing it as a pointer to a class.

subclass In the Objective-C language, any class that’s
one step below another class in the inheritance
hierarchy. Occasionally used more generally to mean
any class that inherits from another class, and

sometimes also used as a verb to mean the process of
defining a subclass of another class.

superclass In the Objective-C language, a class that’s
one step above another class in the inheritance
hierarchy; the class through which a subclass inherits
methods and instance variables.

surrogate An object that stands in for and forwards
messages to another object.

synchronous message A remote message that doesn’t
return until the receiving application finishes
responding to the message. Because the application
that sends the message waits for an acknowledgment
or return information from the receiving application,
the two applications are kept “in sync.” See also
asynchronous message.

target In the Application Kit, the object that receives
action messages from an NSControl.

typed stream A specialized data stream used for
archiving. When a typed stream is used, the type of the
data is archived along with the data and an object’s
class hierarchy and version are archived with the
object. See also archiving.

Window Server A process that dispatches user events to
applications and renders PostScript code on behalf of
applications.

zone A particular region of dynamic memory. Zones are
set up in program code and are passed to allocation
methods and functions to specify that the allocated
memory should come from a particular zone.
Allocating related data structures from the same zone
can improve locality of reference and overall system
performance.

Reference

168

INDEX

Index

170

Symbols

#import directive 70, 153
// comment marker 153
@class directive 71, 154, 164
@defs() directive 119, 154, 167
@encode() directive 120–122, 154, 168
@end directive 68, 154, 163, 164
@implementation directive 72, 153, 155,

156, 164
@interface directive 68, 153, 155, 163,

164
@private directive 76–78, 154, 165
@protected directive 76–78, 154, 165
@protocol directive 102, 153, 156, 164
@protocol() directive 104, 154, 156, 168
@public directive 76–78, 154, 165
@selector() directive 81, 154, 168

A

abstract classes 59–60
action messages 84
adopting protocols 102–103, 156
+ alloc method 63, 128
allocating instances 63, 128–131
+ allocFromZone: method 128
anonymous objects 99–100
archiving 149–??
arguments, variable number of 52, 70, 73

B

BOOL data type 152
bycopy type qualifier 113–114, 123, 156,

167

C

C++, using with Objective C 48
categories 94–97

declaration of 95, 155, 164
implementation of 95, 155, 164
uses of 96, 101–102

Class data type 62, 152
@class directive 71, 154, 164
+ class method 62
– class method 62
class methods 62, 69
class objects 55, 61–??, 67

classes 21–24, 55–78
declaration of 68–72, 155, 163
implementation of 72–78, 155, 164

_cmd 85, 157
// comment marker 153
conforming to protocols 97, 104, 106–107
– conformsTo: method 104, 106
customizing

with class objects 63–65

D

@defs() directive 119, 154, 167
designated initializer 135–138
distributed objects 108–114
dynamic binding 32–34, 53–54, 78–81
dynamic loading 34–36, 146–??
dynamic typing 31–32, 50–51

E

encapsulation 25–26
@encode() directive 154, 168, 120–122
@end directive 68, 154, 163, 164
events 39

F

– forward:: method 141–143
forwarding 141–??
– free method 140–141

H

hidden arguments See self and _cmd

I

id data type 49–51, 60, 116, 152, 157, 166
IMP data type 152
implementation and interface 14–18, 43
@implementation directive 72, 153, 155,

156, 164
#import directive 70, 153
in type qualifier 112–113, 123, 156, 167
information hiding See encapsulation
inheritance 27–30, 44, 55–60
– init method 63, 131–138
+ initialize method 66
initializing

classes 66

instances 63, 131–140
inout type qualifier 112–113, 123, 156,

167
instance methods 62, 69
instance variables 18, 48–49

declaration of 69, 155, 165
inheriting 57–58
of the receiver 52–53
outlets 36–38
referring to 73–78
scope of 75–78

instances of a class 55
allocating 63, 128–131
initializing 63, 131–140

interface and implementation 14–18, 43
@interface directive 68, 153, 155, 163,

164
introspection 50, 61
isa instance variable 50–51, 79
– isKindOf: method 61, 144
– isMemberOf: method 61

L

late binding 34
localization 147–148

M

message expressions 51, 152
message receiver 20, 51, 152
messages 19, 20–21, 51–52, 152
messaging 53–54, 78–81
– methodFor: method 118
methods 18, 48–49

class methods 62, 69
declaration of 69–70, 157, 165
implementation of 73, 157, 165
inheriting 58–59
instance methods 62, 69
of the root class 66–??
overriding 29, 59
return and argument types 82, 117

N

naming conventions 158
+ new method 138
nil 50, 52, 153

171

NXBundle objects 146–??
NXDefaultMallocZone() function 129

O

objc_lookUpClass() function 67
objc_msgSend() function 78
Object class 55, 56–57
objects 18–20, 48–49
oneway type qualifier 110–111, 123, 156,

167
out type qualifier 112–113, 123, 156, 167
outlet instance variables 36–38
overriding methods 29, 59

P

– perform: method 82–83
– perform:with: method 82–83
– perform:with:with: method 82–83
– performv:: method ??–143
polymorphism 26–27, 43, 53
@private directive 76–78, 154, 165
@protected directive 76–78, 154, 165
@protocol directive 102, 153, 156, 164
Protocol objects 103–104
@protocol() directive 104, 154, 156, 168
protocols 97–107

adopting 102–103, 156
conforming to 97, 104, 106–107
declaration of 102–103, 156, 164
formal 102–107, 156–157
incorporating other protocols 106–107,

156
informal 101–102
type checking 105–106
uses of 98–101, 109

proxy objects 108–114
@public directive 76–78, 154, 165

R

receiver of a message 20, 51, 152
remote messages 107–114
– respondsTo: method 84, 144
reusability of software 23–24

S

SEL data type 81, 152

sel_getName() function 82
sel_getUid() function 81
@selector() directive 81, 154, 168
selectors 54, 81–82
self 85–89, 90–91, 157, 167
static typing 60–61, 66, 114–118
subclasses 27, 29, 55
super 86–90, 152, 157, 167
superclass 27, 55
surrogate objects 144

T

target-action paradigm 83–84
targets 84
type checking

class types 116–117
protocol types 105–106

Z

– zone method 130
zones 129–131

Index

172

	Object-Oriented Programming And The Objective-C
	Introduction
	Object-Oriented Programming
	The Objective-C Language
	Objective-C Extensions
	The Run-Time System
	Objective-C Language Summary
	Reference Manual for the Obj-C
	Glossary
	Index

